--- language: el datasets: - aesdd tags: - audio - speech - speech-emotion-recognition license: apache-2.0 --- # Emotion Recognition in Greek (el) Speech using HuBERT ## How to use ### Requirements ```bash # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa ``` ### Prediction ```python import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor import librosa import IPython.display as ipd import numpy as np import pandas as pd ``` ```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name_or_path = "m3hrdadfi/hubert-large-greek-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device) ``` ```python def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs ``` ```python path = "/path/to/disgust.wav" outputs = predict(path, sampling_rate) ``` ```bash [ {'Emotion': 'anger', 'Score': '0.0%'}, {'Emotion': 'disgust', 'Score': '99.2%'}, {'Emotion': 'fear', 'Score': '0.1%'}, {'Emotion': 'happiness', 'Score': '0.3%'}, {'Emotion': 'sadness', 'Score': '0.5%'} ] ``` ## Evaluation The following tables summarize the scores obtained by model overall and per each class. | Emotions | precision | recall | f1-score | accuracy | |:---------:|:---------:|:------:|:--------:|:--------:| | anger | 0.96 | 0.96 | 0.96 | | | disgust | 1.00 | 0.96 | 0.98 | | | fear | 1.00 | 0.83 | 0.91 | | | happiness | 1.00 | 0.96 | 0.98 | | | sadness | 0.81 | 1.00 | 0.89 | | | | | | Overal | 0.94 | ## Questions? Post a Github issue from [HERE](https://github.com/m3hrdadfi/soxan/issues).