Initial model
Browse files- README.md +182 -0
- all_results.json +24 -0
- config.json +76 -0
- eval_results.json +12 -0
- predictions.csv +0 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- result.bin +3 -0
- sample566.flac +0 -0
- sample95.flac +0 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- train_results.json +15 -0
- trainer_state.json +297 -0
- training_args.bin +3 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ka
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
tags:
|
6 |
+
- audio
|
7 |
+
- automatic-speech-recognition
|
8 |
+
- speech
|
9 |
+
- xlsr-fine-tuning-week
|
10 |
+
license: apache-2.0
|
11 |
+
widget:
|
12 |
+
- label: Common Voice sample 566
|
13 |
+
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-georgian/resolve/main/sample566.flac
|
14 |
+
- label: Common Voice sample 95
|
15 |
+
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-georgian/resolve/main/sample95.flac
|
16 |
+
model-index:
|
17 |
+
- name: XLSR Wav2Vec2 Georgian by Mehrdad Farahani
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
name: Speech Recognition
|
21 |
+
type: automatic-speech-recognition
|
22 |
+
dataset:
|
23 |
+
name: Common Voice ka
|
24 |
+
type: common_voice
|
25 |
+
args: ka
|
26 |
+
metrics:
|
27 |
+
- name: Test WER
|
28 |
+
type: wer
|
29 |
+
value: 54.00
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
# Wav2Vec2-Large-XLSR-53 Georgian
|
34 |
+
|
35 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Georgian using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz.
|
36 |
+
|
37 |
+
## Usage
|
38 |
+
The model can be used directly (without a language model) as follows:
|
39 |
+
|
40 |
+
```bash
|
41 |
+
!pip install git+https://github.com/huggingface/datasets.git
|
42 |
+
!pip install git+https://github.com/huggingface/transformers.git
|
43 |
+
!pip install torchaudio
|
44 |
+
!pip install librosa
|
45 |
+
!pip install jiwer
|
46 |
+
```
|
47 |
+
|
48 |
+
```python
|
49 |
+
import torch
|
50 |
+
import torchaudio
|
51 |
+
from datasets import load_dataset, load_metric
|
52 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
53 |
+
|
54 |
+
import librosa
|
55 |
+
|
56 |
+
import pandas as pd
|
57 |
+
import numpy as np
|
58 |
+
|
59 |
+
import random
|
60 |
+
import os
|
61 |
+
import string
|
62 |
+
import six
|
63 |
+
import re
|
64 |
+
|
65 |
+
import IPython.display as ipd
|
66 |
+
|
67 |
+
# Loading the datasets
|
68 |
+
dataset = load_dataset("common_voice", "ka", split="test")
|
69 |
+
print(dataset)
|
70 |
+
|
71 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
72 |
+
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian")
|
73 |
+
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device)
|
74 |
+
|
75 |
+
|
76 |
+
# Preprocessing the datasets.
|
77 |
+
chars_to_ignore_regex = f"""[{"".join([
|
78 |
+
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
|
79 |
+
"#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"',
|
80 |
+
"“", "%", "‘", "�", "–", "…", "_", "”", '“', '„'
|
81 |
+
])}]"""
|
82 |
+
|
83 |
+
def remove_special_characters(text, chars_to_ignore):
|
84 |
+
text = re.sub(chars_to_ignore, '', text).lower() + " "
|
85 |
+
return text
|
86 |
+
|
87 |
+
def normalizer(batch, chars_to_ignore):
|
88 |
+
text = batch["sentence"]
|
89 |
+
text = remove_special_characters(text, chars_to_ignore)
|
90 |
+
batch["sentence"] = text
|
91 |
+
return batch
|
92 |
+
|
93 |
+
# We need to read the aduio files as arrays
|
94 |
+
def speech_file_to_array_fn(batch):
|
95 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
96 |
+
speech_array = speech_array.squeeze().numpy()
|
97 |
+
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
|
98 |
+
|
99 |
+
batch["speech"] = speech_array
|
100 |
+
return batch
|
101 |
+
|
102 |
+
def predict(batch):
|
103 |
+
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
104 |
+
|
105 |
+
input_values = features.input_values.to(device)
|
106 |
+
attention_mask = features.attention_mask.to(device)
|
107 |
+
|
108 |
+
with torch.no_grad():
|
109 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
110 |
+
|
111 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
112 |
+
|
113 |
+
batch["predicted"] = processor.batch_decode(pred_ids)[0]
|
114 |
+
return batch
|
115 |
+
|
116 |
+
dataset = dataset.map(normalizer, fn_kwargs={"chars_to_ignore": chars_to_ignore_regex})
|
117 |
+
dataset = dataset.map(speech_file_to_array_fn, remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])))
|
118 |
+
result = dataset.map(predict)
|
119 |
+
```
|
120 |
+
|
121 |
+
## Prediction
|
122 |
+
|
123 |
+
```python
|
124 |
+
max_items = np.random.randint(0, len(result), 20).tolist()
|
125 |
+
for i in max_items:
|
126 |
+
reference, predicted = result["sentence"][i], result["predicted"][i]
|
127 |
+
print("reference:", reference)
|
128 |
+
print("predicted:", predicted)
|
129 |
+
print('---')
|
130 |
+
```
|
131 |
+
|
132 |
+
```text
|
133 |
+
reference: ადმინისტრაციული ცენტრი ქალაქი იმიშლი
|
134 |
+
predicted: ადმინისტრაციული ცენტრი ქალაქი იმიშლი
|
135 |
+
---
|
136 |
+
reference: დაიბადა ადვოკატის ოჯახში
|
137 |
+
predicted: აიბადა ადმოკატის ოჯახში
|
138 |
+
---
|
139 |
+
reference: აღსანიშნავია რომ სიმღერა წარმოადგენს პოლ მაკკარტნისა და ჯორჯ ჰარისონის იშვიათ ვოკალურ დუეტს
|
140 |
+
predicted: აღსენიშნავიარო სიმღე რაწარმოადგემს ბოლ მაკარდნის და ჯორჩხარისონის იშვიად ვოკალურ დუეთს
|
141 |
+
---
|
142 |
+
reference: იკრძალებოდა წირვალოცვა ქართულ ენაზე
|
143 |
+
predicted: იკრძალებოდ��� წირვა ლოცვა ქართულ ენაზე
|
144 |
+
---
|
145 |
+
reference: აღმართულია ვალესა და ბერნის კანტონების საზღვარზე
|
146 |
+
predicted: აღმართულია ვალესა და ბერნის კანთონების საზღვარზე
|
147 |
+
---
|
148 |
+
reference: აქ იგი მიიწვიეს სამხატვრო აკადემიაში სადაც სიცოცხლის ბოლომდე ეწეოდა პედაგოგიურ მოღვაწეობას
|
149 |
+
predicted: აქ იგი მიისწრვიეს სამხატრო აკადემი აშისა და ციცაცხლის ბოლომდე ეწყებობ და პედაგუდივირ მოყვაწევებას
|
150 |
+
---
|
151 |
+
reference: კლარისა თანხმდება შემოთავაზებაზე და ლექტერის დახმარებით სერიული მკვლელის კვალს დაადგება
|
152 |
+
predicted: კლარის თან ხვდება შემუთავაზე ბაზე და ლექტერის დახმარებიც სერიური მკვლელის კველს დაადგებაა
|
153 |
+
---
|
154 |
+
reference: იბრძოდა ტყვეებით ვაჭრობის წინააღმდეგ
|
155 |
+
predicted: დიბრძოტო ტყვეებით ვაჭრობის წინააღდეგ
|
156 |
+
---
|
157 |
+
reference: სათავსს აღმოსავლეთით და დასავლეთით თითო სარკმელი აქვს
|
158 |
+
predicted: სათავს აღმოსაველეთი და დასავლეთ მთიდო სარკმელი აქვს
|
159 |
+
---
|
160 |
+
reference: იგი მდებარეობს ქალაქის ჩრდილოაღმოსავლეთ ნაწილში
|
161 |
+
predicted: იგი მდებარეობს ქალაქის ჩრდილო აღმოსავლეთ ნაწილში
|
162 |
+
---
|
163 |
+
```
|
164 |
+
|
165 |
+
## Evaluation
|
166 |
+
|
167 |
+
```python
|
168 |
+
wer = load_metric("wer")
|
169 |
+
|
170 |
+
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
|
171 |
+
```
|
172 |
+
|
173 |
+
**Test Result**:
|
174 |
+
- WER: 54.00%
|
175 |
+
|
176 |
+
|
177 |
+
## Training & Report
|
178 |
+
The Common Voice `train`, `validation` datasets were used for training.
|
179 |
+
|
180 |
+
You can see the training states [here](https://wandb.ai/m3hrdadfi/finetuned_wav2vec_xlsr_georgian/reports/Fine-Tuning-for-Wav2Vec2-Large-XLSR-53-Georgian--Vmlldzo1NTg5MDQ?accessToken=rsmd0p83iln13yq23b9kzj8bim6nco21w8cqn2tb19v51okakqk92c71h6hbxmfj)
|
181 |
+
|
182 |
+
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Georgian_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb)
|
all_results.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"eval_loss": 0.4455166161060333,
|
4 |
+
"eval_mem_cpu_alloc_delta": 52916700,
|
5 |
+
"eval_mem_cpu_peaked_delta": 92345080,
|
6 |
+
"eval_mem_gpu_alloc_delta": 0,
|
7 |
+
"eval_mem_gpu_peaked_delta": 5249111040,
|
8 |
+
"eval_runtime": 81.4513,
|
9 |
+
"eval_samples": 654,
|
10 |
+
"eval_samples_per_second": 8.029,
|
11 |
+
"eval_wer": 0.5288702928870292,
|
12 |
+
"init_mem_cpu_alloc_delta": 9478038,
|
13 |
+
"init_mem_cpu_peaked_delta": 18306,
|
14 |
+
"init_mem_gpu_alloc_delta": 1261911040,
|
15 |
+
"init_mem_gpu_peaked_delta": 0,
|
16 |
+
"total_flos": 8.556740517881789e+18,
|
17 |
+
"train_mem_cpu_alloc_delta": 12260352,
|
18 |
+
"train_mem_cpu_peaked_delta": 186508822,
|
19 |
+
"train_mem_gpu_alloc_delta": 3794085376,
|
20 |
+
"train_mem_gpu_peaked_delta": 6038033408,
|
21 |
+
"train_runtime": 8781.3793,
|
22 |
+
"train_samples": 1585,
|
23 |
+
"train_samples_per_second": 0.109
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": true,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.0,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"gradient_checkpointing": true,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.1,
|
50 |
+
"hidden_size": 1024,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 4096,
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.1,
|
55 |
+
"mask_channel_length": 10,
|
56 |
+
"mask_channel_min_space": 1,
|
57 |
+
"mask_channel_other": 0.0,
|
58 |
+
"mask_channel_prob": 0.0,
|
59 |
+
"mask_channel_selection": "static",
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_prob": 0.0,
|
62 |
+
"mask_time_length": 10,
|
63 |
+
"mask_time_min_space": 1,
|
64 |
+
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.05,
|
66 |
+
"mask_time_selection": "static",
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 0,
|
74 |
+
"transformers_version": "4.5.0.dev0",
|
75 |
+
"vocab_size": 38
|
76 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"eval_loss": 0.4455166161060333,
|
4 |
+
"eval_mem_cpu_alloc_delta": 52916700,
|
5 |
+
"eval_mem_cpu_peaked_delta": 92345080,
|
6 |
+
"eval_mem_gpu_alloc_delta": 0,
|
7 |
+
"eval_mem_gpu_peaked_delta": 5249111040,
|
8 |
+
"eval_runtime": 81.4513,
|
9 |
+
"eval_samples": 654,
|
10 |
+
"eval_samples_per_second": 8.029,
|
11 |
+
"eval_wer": 0.5288702928870292
|
12 |
+
}
|
predictions.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c0938b613c1c3fe1abd582f27dfec45efeef27402c30a8bc0de2408aef51c21
|
3 |
+
size 1262089623
|
result.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c42bc8fa4f5eca7ff0ab10d3692e0b33144189969b2b23f107e68c3f4e47803
|
3 |
+
size 3183
|
sample566.flac
ADDED
Binary file (64.4 kB). View file
|
|
sample95.flac
ADDED
Binary file (75 kB). View file
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|"}
|
train_results.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"init_mem_cpu_alloc_delta": 9478038,
|
4 |
+
"init_mem_cpu_peaked_delta": 18306,
|
5 |
+
"init_mem_gpu_alloc_delta": 1261911040,
|
6 |
+
"init_mem_gpu_peaked_delta": 0,
|
7 |
+
"total_flos": 8.556740517881789e+18,
|
8 |
+
"train_mem_cpu_alloc_delta": 12260352,
|
9 |
+
"train_mem_cpu_peaked_delta": 186508822,
|
10 |
+
"train_mem_gpu_alloc_delta": 3794085376,
|
11 |
+
"train_mem_gpu_peaked_delta": 6038033408,
|
12 |
+
"train_runtime": 8781.3793,
|
13 |
+
"train_samples": 1585,
|
14 |
+
"train_samples_per_second": 0.109
|
15 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 30.0,
|
5 |
+
"global_step": 960,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 1.56,
|
12 |
+
"learning_rate": 7.5e-05,
|
13 |
+
"loss": 13.0978,
|
14 |
+
"step": 50
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 1.56,
|
18 |
+
"eval_loss": 13.780136108398438,
|
19 |
+
"eval_runtime": 82.8799,
|
20 |
+
"eval_samples_per_second": 7.891,
|
21 |
+
"eval_wer": 1.0,
|
22 |
+
"step": 50
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"epoch": 3.12,
|
26 |
+
"learning_rate": 0.00015,
|
27 |
+
"loss": 7.3093,
|
28 |
+
"step": 100
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 3.12,
|
32 |
+
"eval_loss": 3.198237419128418,
|
33 |
+
"eval_runtime": 81.5893,
|
34 |
+
"eval_samples_per_second": 8.016,
|
35 |
+
"eval_wer": 1.0,
|
36 |
+
"step": 100
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 4.69,
|
40 |
+
"learning_rate": 0.000225,
|
41 |
+
"loss": 3.0745,
|
42 |
+
"step": 150
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"epoch": 4.69,
|
46 |
+
"eval_loss": 3.1082892417907715,
|
47 |
+
"eval_runtime": 82.4037,
|
48 |
+
"eval_samples_per_second": 7.937,
|
49 |
+
"eval_wer": 1.0,
|
50 |
+
"step": 150
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 6.25,
|
54 |
+
"learning_rate": 0.0003,
|
55 |
+
"loss": 3.0551,
|
56 |
+
"step": 200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 6.25,
|
60 |
+
"eval_loss": 3.0994772911071777,
|
61 |
+
"eval_runtime": 82.7226,
|
62 |
+
"eval_samples_per_second": 7.906,
|
63 |
+
"eval_wer": 1.0,
|
64 |
+
"step": 200
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 7.81,
|
68 |
+
"learning_rate": 0.00028026315789473683,
|
69 |
+
"loss": 3.0632,
|
70 |
+
"step": 250
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 7.81,
|
74 |
+
"eval_loss": 3.0916755199432373,
|
75 |
+
"eval_runtime": 83.5323,
|
76 |
+
"eval_samples_per_second": 7.829,
|
77 |
+
"eval_wer": 1.0,
|
78 |
+
"step": 250
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 9.38,
|
82 |
+
"learning_rate": 0.0002605263157894737,
|
83 |
+
"loss": 3.0391,
|
84 |
+
"step": 300
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 9.38,
|
88 |
+
"eval_loss": 3.0707435607910156,
|
89 |
+
"eval_runtime": 82.7328,
|
90 |
+
"eval_samples_per_second": 7.905,
|
91 |
+
"eval_wer": 1.0,
|
92 |
+
"step": 300
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 10.94,
|
96 |
+
"learning_rate": 0.00024078947368421052,
|
97 |
+
"loss": 3.0321,
|
98 |
+
"step": 350
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 10.94,
|
102 |
+
"eval_loss": 3.0443670749664307,
|
103 |
+
"eval_runtime": 84.1437,
|
104 |
+
"eval_samples_per_second": 7.772,
|
105 |
+
"eval_wer": 1.0,
|
106 |
+
"step": 350
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 12.5,
|
110 |
+
"learning_rate": 0.00022105263157894733,
|
111 |
+
"loss": 3.0069,
|
112 |
+
"step": 400
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 12.5,
|
116 |
+
"eval_loss": 2.998474359512329,
|
117 |
+
"eval_runtime": 83.9178,
|
118 |
+
"eval_samples_per_second": 7.793,
|
119 |
+
"eval_wer": 1.0,
|
120 |
+
"step": 400
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 14.06,
|
124 |
+
"learning_rate": 0.0002013157894736842,
|
125 |
+
"loss": 2.9623,
|
126 |
+
"step": 450
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"epoch": 14.06,
|
130 |
+
"eval_loss": 2.866849184036255,
|
131 |
+
"eval_runtime": 82.5906,
|
132 |
+
"eval_samples_per_second": 7.919,
|
133 |
+
"eval_wer": 1.0,
|
134 |
+
"step": 450
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 15.62,
|
138 |
+
"learning_rate": 0.00018157894736842105,
|
139 |
+
"loss": 2.4771,
|
140 |
+
"step": 500
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 15.62,
|
144 |
+
"eval_loss": 1.5367902517318726,
|
145 |
+
"eval_runtime": 85.6456,
|
146 |
+
"eval_samples_per_second": 7.636,
|
147 |
+
"eval_wer": 0.9838912133891213,
|
148 |
+
"step": 500
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"epoch": 17.19,
|
152 |
+
"learning_rate": 0.00016184210526315788,
|
153 |
+
"loss": 1.0561,
|
154 |
+
"step": 550
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 17.19,
|
158 |
+
"eval_loss": 0.6924143433570862,
|
159 |
+
"eval_runtime": 85.1658,
|
160 |
+
"eval_samples_per_second": 7.679,
|
161 |
+
"eval_wer": 0.7548117154811715,
|
162 |
+
"step": 550
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 18.75,
|
166 |
+
"learning_rate": 0.0001421052631578947,
|
167 |
+
"loss": 0.5288,
|
168 |
+
"step": 600
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 18.75,
|
172 |
+
"eval_loss": 0.5334728956222534,
|
173 |
+
"eval_runtime": 83.737,
|
174 |
+
"eval_samples_per_second": 7.81,
|
175 |
+
"eval_wer": 0.6569037656903766,
|
176 |
+
"step": 600
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 20.31,
|
180 |
+
"learning_rate": 0.00012236842105263157,
|
181 |
+
"loss": 0.3581,
|
182 |
+
"step": 650
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 20.31,
|
186 |
+
"eval_loss": 0.48591092228889465,
|
187 |
+
"eval_runtime": 86.2479,
|
188 |
+
"eval_samples_per_second": 7.583,
|
189 |
+
"eval_wer": 0.605857740585774,
|
190 |
+
"step": 650
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 21.88,
|
194 |
+
"learning_rate": 0.00010263157894736841,
|
195 |
+
"loss": 0.2638,
|
196 |
+
"step": 700
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 21.88,
|
200 |
+
"eval_loss": 0.4631027579307556,
|
201 |
+
"eval_runtime": 84.0825,
|
202 |
+
"eval_samples_per_second": 7.778,
|
203 |
+
"eval_wer": 0.5648535564853556,
|
204 |
+
"step": 700
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 23.44,
|
208 |
+
"learning_rate": 8.289473684210526e-05,
|
209 |
+
"loss": 0.2284,
|
210 |
+
"step": 750
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"epoch": 23.44,
|
214 |
+
"eval_loss": 0.4597685933113098,
|
215 |
+
"eval_runtime": 86.122,
|
216 |
+
"eval_samples_per_second": 7.594,
|
217 |
+
"eval_wer": 0.5594142259414226,
|
218 |
+
"step": 750
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 25.0,
|
222 |
+
"learning_rate": 6.315789473684209e-05,
|
223 |
+
"loss": 0.1965,
|
224 |
+
"step": 800
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 25.0,
|
228 |
+
"eval_loss": 0.4614764153957367,
|
229 |
+
"eval_runtime": 86.0272,
|
230 |
+
"eval_samples_per_second": 7.602,
|
231 |
+
"eval_wer": 0.5535564853556485,
|
232 |
+
"step": 800
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 26.56,
|
236 |
+
"learning_rate": 4.342105263157895e-05,
|
237 |
+
"loss": 0.1837,
|
238 |
+
"step": 850
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"epoch": 26.56,
|
242 |
+
"eval_loss": 0.4499300718307495,
|
243 |
+
"eval_runtime": 89.3292,
|
244 |
+
"eval_samples_per_second": 7.321,
|
245 |
+
"eval_wer": 0.5349372384937239,
|
246 |
+
"step": 850
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 28.12,
|
250 |
+
"learning_rate": 2.3684210526315787e-05,
|
251 |
+
"loss": 0.187,
|
252 |
+
"step": 900
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"epoch": 28.12,
|
256 |
+
"eval_loss": 0.45425695180892944,
|
257 |
+
"eval_runtime": 85.6275,
|
258 |
+
"eval_samples_per_second": 7.638,
|
259 |
+
"eval_wer": 0.5345188284518828,
|
260 |
+
"step": 900
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 29.69,
|
264 |
+
"learning_rate": 3.947368421052631e-06,
|
265 |
+
"loss": 0.1568,
|
266 |
+
"step": 950
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 29.69,
|
270 |
+
"eval_loss": 0.4458238184452057,
|
271 |
+
"eval_runtime": 84.9753,
|
272 |
+
"eval_samples_per_second": 7.696,
|
273 |
+
"eval_wer": 0.5290794979079498,
|
274 |
+
"step": 950
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 30.0,
|
278 |
+
"step": 960,
|
279 |
+
"total_flos": 8.556740517881789e+18,
|
280 |
+
"train_runtime": 8781.3793,
|
281 |
+
"train_samples_per_second": 0.109
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 30.0,
|
285 |
+
"eval_loss": 0.4455166161060333,
|
286 |
+
"eval_runtime": 81.4513,
|
287 |
+
"eval_samples_per_second": 8.029,
|
288 |
+
"eval_wer": 0.5288702928870292,
|
289 |
+
"step": 960
|
290 |
+
}
|
291 |
+
],
|
292 |
+
"max_steps": 960,
|
293 |
+
"num_train_epochs": 30,
|
294 |
+
"total_flos": 8.556740517881789e+18,
|
295 |
+
"trial_name": null,
|
296 |
+
"trial_params": null
|
297 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b09499473860372d1a5755c32562e264aa7cbc7d9f4c4491ed862c399a413bb7
|
3 |
+
size 2351
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "ა": 5, "ბ": 6, "გ": 7, "დ": 8, "ე": 9, "ვ": 10, "ზ": 11, "თ": 12, "ი": 13, "კ": 14, "ლ": 15, "მ": 16, "ნ": 17, "ო": 18, "პ": 19, "ჟ": 20, "რ": 21, "ს": 22, "ტ": 23, "უ": 24, "ფ": 25, "ქ": 26, "ღ": 27, "ყ": 28, "შ": 29, "ჩ": 30, "ც": 31, "ძ": 32, "წ": 33, "ჭ": 34, "ხ": 35, "ჯ": 36, "ჰ": 37}
|