|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- chat |
|
--- |
|
|
|
# mPLUG-Owl3 |
|
|
|
## Introduction |
|
mPLUG-Owl3 is a state-of-the-art multi-modal large language model designed to tackle the challenges of long image sequence understanding. We propose Hyper Attention, which boosts the speed of long visual sequence understanding in multimodal large language models by sixfold, allowing for processing of visual sequences that are eight times longer. Meanwhile, we maintain excellent performance on single-image, multi-image, and video tasks. |
|
|
|
Github: [mPLUG-Owl](https://github.com/X-PLUG/mPLUG-Owl) |
|
|
|
## Quickstart |
|
|
|
Load the mPLUG-Owl3. We now only support attn_implementation in ```['sdpa', 'flash_attention_2']```. |
|
```Python |
|
|
|
|
|
import torch |
|
from transformers import AutoConfig, AutoModel |
|
model_path = 'mPLUG/mPLUG-Owl3-2B-241014' |
|
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) |
|
print(config) |
|
# model = mPLUGOwl3Model(config).cuda().half() |
|
model = AutoModel.from_pretrained(model_path, attn_implementation='sdpa', torch_dtype=torch.half, trust_remote_code=True) |
|
model.eval().cuda() |
|
``` |
|
Chat with images. |
|
```Python |
|
from PIL import Image |
|
|
|
from transformers import AutoTokenizer, AutoProcessor |
|
from decord import VideoReader, cpu |
|
model_path = 'mPLUG/mPLUG-Owl3-2B-241014' |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
processor = model.init_processor(tokenizer) |
|
|
|
image = Image.new('RGB', (500, 500), color='red') |
|
|
|
messages = [ |
|
{"role": "user", "content": """<|image|> |
|
Describe this image."""}, |
|
{"role": "assistant", "content": ""} |
|
] |
|
|
|
inputs = processor(messages, images=[image], videos=None) |
|
|
|
inputs.to('cuda') |
|
inputs.update({ |
|
'tokenizer': tokenizer, |
|
'max_new_tokens':100, |
|
'decode_text':True, |
|
}) |
|
|
|
|
|
g = model.generate(**inputs) |
|
print(g) |
|
``` |
|
|
|
Chat with a video. |
|
```Python |
|
from PIL import Image |
|
|
|
from transformers import AutoTokenizer, AutoProcessor |
|
from decord import VideoReader, cpu # pip install decord |
|
model_path = 'mPLUG/mPLUG-Owl3-2B-241014' |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
processor = model.init_processor(tokenizer) |
|
|
|
|
|
messages = [ |
|
{"role": "user", "content": """<|video|> |
|
Describe this video."""}, |
|
{"role": "assistant", "content": ""} |
|
] |
|
|
|
videos = ['/nas-mmu-data/examples/car_room.mp4'] |
|
|
|
MAX_NUM_FRAMES=16 |
|
|
|
def encode_video(video_path): |
|
def uniform_sample(l, n): |
|
gap = len(l) / n |
|
idxs = [int(i * gap + gap / 2) for i in range(n)] |
|
return [l[i] for i in idxs] |
|
|
|
vr = VideoReader(video_path, ctx=cpu(0)) |
|
sample_fps = round(vr.get_avg_fps() / 1) # FPS |
|
frame_idx = [i for i in range(0, len(vr), sample_fps)] |
|
if len(frame_idx) > MAX_NUM_FRAMES: |
|
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES) |
|
frames = vr.get_batch(frame_idx).asnumpy() |
|
frames = [Image.fromarray(v.astype('uint8')) for v in frames] |
|
print('num frames:', len(frames)) |
|
return frames |
|
video_frames = [encode_video(_) for _ in videos] |
|
inputs = processor(messages, images=None, videos=video_frames) |
|
|
|
inputs.to('cuda') |
|
inputs.update({ |
|
'tokenizer': tokenizer, |
|
'max_new_tokens':100, |
|
'decode_text':True, |
|
}) |
|
|
|
|
|
g = model.generate(**inputs) |
|
print(g) |
|
``` |
|
|
|
|
|
## Citation |
|
|
|
If you find our work helpful, feel free to give us a cite. |
|
|
|
``` |
|
@misc{ye2024mplugowl3longimagesequenceunderstanding, |
|
title={mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models}, |
|
author={Jiabo Ye and Haiyang Xu and Haowei Liu and Anwen Hu and Ming Yan and Qi Qian and Ji Zhang and Fei Huang and Jingren Zhou}, |
|
year={2024}, |
|
eprint={2408.04840}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2408.04840}, |
|
} |
|
``` |
|
|
|
|