File size: 15,226 Bytes
b31989d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for mPLUGOwl3.
"""
from typing import List, Optional, Union, Dict, Any
import warnings
import torch
import re
from transformers.image_processing_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
from .image_processing_mplugowl3 import mPLUGOwl3BatchFeature, mPLUGOwl3ImageProcessor
OWL_MEDIA_TOKEN=['<|image|>']
class MediaIndicesHelper():
def __init__(self, tokenizer) -> None:
self.media_position = []
self.tokenizer = tokenizer
def has_media(self, text, media_tokens=None):
if media_tokens is None:
media_tokens = OWL_MEDIA_TOKEN
has_media_flag = any([media_token == text for media_token in media_tokens])
if any([media_token in text for media_token in media_tokens]):
# 不允许出现text中包含media token但是不仅仅是media token。 media token必须单独为一个chunk
assert has_media_flag, text
return has_media_flag
def add_media(self, text_chunk, text=None, tokenize_fn=None):
# cross
assert tokenize_fn is not None
assert text is not None
assert text in OWL_MEDIA_TOKEN
media_token_ids = tokenize_fn(text)
start = len(text_chunk)
end = start + len(media_token_ids)
self.media_position.append([start, end])
text_chunk.extend(media_token_ids)
return len(media_token_ids)
def cal_media_offset(self, input_ids):
if len(self.media_position) == 0:
return torch.ones_like(input_ids)*(-1000000)
media_starts = torch.tensor([_[0] for _ in self.media_position]).reshape(1,-1)
rng = torch.arange(input_ids.shape[0]).reshape(-1,1)
matrix = (rng > media_starts).sum(dim=1)
return matrix
def len_images(self,):
return len(self.media_position)
class mPLUGOwl3Processor(ProcessorMixin):
r"""
Args:
image_processor ([`mPLUGOwl3ImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerWrapper`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor: mPLUGOwl3ImageProcessor = None, tokenizer=None, prompt_style='chatml', inference_mode=True, addition_eod="<|endoftext|>"):
super().__init__(image_processor, tokenizer)
self.image_processor: mPLUGOwl3ImageProcessor
self.prompt_style = prompt_style
self.inference_mode = inference_mode
self.media_tokens = ["<|image|>"]
self.addition_eod = addition_eod
def build_text_qwen(self, messages):
# role should be within ['system', 'user', 'assistant']
im_start, im_end = '<|im_start|>', '<|im_end|>'
text = []
for num_turn, message in enumerate(messages):
if num_turn == 0 and message['role'] != 'system':
if self.prompt_style != 'plain':
text.append({
"text": f"{im_start}system\n{im_end}",
"label": 0
})
if message['role'] == 'system':
if self.prompt_style != 'plain':
text.append({
"text": f"{im_start}system\n{message['content']}{im_end}",
"label": 0
})
elif message['role'] == 'user':
if self.prompt_style != 'plain':
content = f"\n{im_start}user\n{message['content']}{im_end}"
else:
content = message['content']
pattern = '|'.join(map(re.escape, self.media_tokens))
chunk_strs = re.split(f'({pattern})', content)
for chunk_str in chunk_strs:
text.append({
"text": chunk_str,
"label": 0
})
elif message['role'] == 'assistant':
if self.prompt_style != 'plain':
text.append({"text": f"\n{im_start}assistant\n", "label": 0})
text.append({"text": f"{message['content']}{im_end}", "label": 1})
else:
text.append({"text": f"{message['content']}", "label": 1})
text.append({"text": self.addition_eod, "label": 1})
else:
raise NotImplementedError
if self.inference_mode:
while text and text[-1]['label']==1: # 只要列表非空且最后一个元素满足条件
text.pop() # 就移除最后一个元素
return text
def wrapped_tokenize(self, text):
return self.tokenizer(text).input_ids
def encode_text_sft(self, texts):
# output enc_chunk
enc_chunk = []
label_chunk = []
enc_length = 0
num_images = 0
media_helper = MediaIndicesHelper(tokenizer=self.tokenizer)
for current_ti, text_chunk in enumerate(texts):
text = text_chunk["text"]
label = text_chunk["label"]
if not media_helper.has_media(text):
curr_chunk=self.wrapped_tokenize(text)
if label == 1:
enc_length += len(curr_chunk)
enc_chunk += curr_chunk
label_chunk += [label] * len(curr_chunk)
else:
enc_length += len(curr_chunk)
enc_chunk += curr_chunk
label_chunk += [label] * len(curr_chunk)
# For media tokens
else:
add_length = media_helper.add_media(
enc_chunk,
text=text,
tokenize_fn=self.wrapped_tokenize)
enc_length += add_length
label_chunk += [label] * add_length
# enc_chunk.extend([self.media_tokens[text]] * self.media_lengths[text])
# enc_length += self.media_lengths[text]
# label_chunk += [label] * self.media_lengths[text]
num_images += 1
enc_chunk = torch.tensor(enc_chunk).long()
media_offset = []
media_before = 0
for i,_ in enumerate([media_helper]):
mo = _.cal_media_offset(enc_chunk)
media_offset.append(torch.cat([(torch.ones(mo.shape[0],1)*media_before).long().to(mo.device), (mo+media_before).unsqueeze(1)], dim=1)) # L 2
media_before += _.len_images()
media_offset = torch.stack(media_offset, dim=0)
return {
'input_ids': enc_chunk.unsqueeze(0),
'media_offset': media_offset,
}
def __call__(
self,
messages,
images: ImageInput = None,
videos = None,
max_length: Optional[int] = None,
cut_enable=True,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
**kwargs
) -> mPLUGOwl3BatchFeature:
if videos is not None and len(videos)>0:
cut_enable=False
assert images is None or len(images)==0, "We do not support image video interleaved yet"
video_ptr = 0
for message in messages:
text_list = message['content'].split('<|video|>')
text = text_list[0]
for next_text in text_list[1:]:
text += '<|image|>'*len(videos[video_ptr])
text += next_text
video_ptr += 1
message['content'] = text
images = [frame for video in videos for frame in video ]
self.check_media(images, messages)
if images is not None:
image_inputs = self.image_processor(images, cut_enable=cut_enable, return_tensors=return_tensors)
if image_inputs.get('cut_shape',None) is not None:
cut_shape = image_inputs['cut_shape']
image_token_ptr = 0
for message in messages:
text_list = message['content'].split('<|image|>')
text = text_list[0]
for next_text in text_list[1:]:
text += self.image_processor.cut_prompt_template(img_token='<|image|>', h=cut_shape[image_token_ptr][0], w=cut_shape[image_token_ptr][1])
text += next_text
image_token_ptr += 1
message['content'] = text
# text = ''.join([_['text'] for _ in text])
text = self.build_text_qwen(messages)
model_inputs = self.encode_text_sft(text)
if images is not None:
model_inputs.update(image_inputs.data)
if 'cut_shape' in model_inputs:
model_inputs.pop('cut_shape')
if 'cut_shape_indices' in model_inputs:
model_inputs.pop('cut_shape_indices')
return mPLUGOwl3BatchFeature(model_inputs)
def check_media(self, images, messages):
media_num = 0 if images is None else len(images)
media_count = sum([message['content'].count('<|image|>') for message in messages])
assert media_num == media_count
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
output_ids = args[0]
result_text = []
for result in output_ids:
result = result[result != 0]
if result[0] == self.tokenizer.bos_id:
result = result[1:]
if result[-1] == self.tokenizer.eos_id:
result = result[:-1]
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
return result_text
# return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
result = args[0]
result = result[result != 0]
if result[0] == self.tokenizer.bos_id:
result = result[1:]
if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id):
result = result[:-1]
return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
def _convert(
self, input_str, max_inp_length: Optional[int] = None
):
if self.version > 2.5 or not getattr(self.tokenizer, "add_bos_token", False):
input_ids = self.tokenizer.encode(input_str)
else:
input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str)
if max_inp_length is not None:
input_ids = input_ids[:max_inp_length]
input_ids = torch.tensor(input_ids, dtype=torch.int32)
start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id)
end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)
image_start_tokens = torch.where(start_cond)[0]
image_start_tokens += 1
image_end_tokens = torch.where(end_cond)[0]
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
image_bounds = torch.hstack(
[
image_start_tokens[:valid_image_nums].unsqueeze(-1),
image_end_tokens[:valid_image_nums].unsqueeze(-1),
]
)
return input_ids, image_bounds
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"):
items = []
if isinstance(inputs[0], list):
assert isinstance(inputs[0][0], torch.Tensor)
for it in inputs:
for tr in it:
items.append(tr)
else:
assert isinstance(inputs[0], torch.Tensor)
items = inputs
batch_size = len(items)
shape = items[0].shape
dim = len(shape)
assert dim <= 2
if max_length is None:
max_length = 0
max_length = max(max_length, max(item.shape[-1] for item in items))
min_length = min(item.shape[-1] for item in items)
dtype = items[0].dtype
if dim == 0:
return torch.stack([item for item in items], dim=0), [0]
elif dim == 1:
if max_length == min_length:
return torch.stack([item for item in items], dim=0), [0] * batch_size
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
else:
tensor = (
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
+ padding_value
)
padding_length = []
for i, item in enumerate(items):
if dim == 1:
if padding_side == "left":
tensor[i, -len(item) :] = item.clone()
else:
tensor[i, : len(item)] = item.clone()
elif dim == 2:
if padding_side == "left":
tensor[i, -len(item) :, :] = item.clone()
else:
tensor[i, : len(item), :] = item.clone()
padding_length.append(tensor.shape[-1] - len(item))
return tensor, padding_length
|