# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for mPLUGOwl3. """ from typing import List, Optional, Union, Dict, Any import warnings import torch import re from transformers.image_processing_utils import BatchFeature from transformers.image_utils import ImageInput from transformers.processing_utils import ProcessorMixin from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device from .image_processing_mplugowl3 import mPLUGOwl3BatchFeature, mPLUGOwl3ImageProcessor OWL_MEDIA_TOKEN=['<|image|>'] class MediaIndicesHelper(): def __init__(self, tokenizer) -> None: self.media_position = [] self.tokenizer = tokenizer def has_media(self, text, media_tokens=None): if media_tokens is None: media_tokens = OWL_MEDIA_TOKEN has_media_flag = any([media_token == text for media_token in media_tokens]) if any([media_token in text for media_token in media_tokens]): # 不允许出现text中包含media token但是不仅仅是media token。 media token必须单独为一个chunk assert has_media_flag, text return has_media_flag def add_media(self, text_chunk, text=None, tokenize_fn=None): # cross assert tokenize_fn is not None assert text is not None assert text in OWL_MEDIA_TOKEN media_token_ids = tokenize_fn(text) start = len(text_chunk) end = start + len(media_token_ids) self.media_position.append([start, end]) text_chunk.extend(media_token_ids) return len(media_token_ids) def cal_media_offset(self, input_ids): if len(self.media_position) == 0: return torch.ones_like(input_ids)*(-1000000) media_starts = torch.tensor([_[0] for _ in self.media_position]).reshape(1,-1) rng = torch.arange(input_ids.shape[0]).reshape(-1,1) matrix = (rng > media_starts).sum(dim=1) return matrix def len_images(self,): return len(self.media_position) class mPLUGOwl3Processor(ProcessorMixin): r""" Args: image_processor ([`mPLUGOwl3ImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerWrapper`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor: mPLUGOwl3ImageProcessor = None, tokenizer=None, prompt_style='chatml', inference_mode=True, addition_eod="<|endoftext|>"): super().__init__(image_processor, tokenizer) self.image_processor: mPLUGOwl3ImageProcessor self.prompt_style = prompt_style self.inference_mode = inference_mode self.media_tokens = ["<|image|>"] self.addition_eod = addition_eod def build_text_qwen(self, messages): # role should be within ['system', 'user', 'assistant'] im_start, im_end = '<|im_start|>', '<|im_end|>' text = [] for num_turn, message in enumerate(messages): if num_turn == 0 and message['role'] != 'system': if self.prompt_style != 'plain': text.append({ "text": f"{im_start}system\n{im_end}", "label": 0 }) if message['role'] == 'system': if self.prompt_style != 'plain': text.append({ "text": f"{im_start}system\n{message['content']}{im_end}", "label": 0 }) elif message['role'] == 'user': if self.prompt_style != 'plain': content = f"\n{im_start}user\n{message['content']}{im_end}" else: content = message['content'] pattern = '|'.join(map(re.escape, self.media_tokens)) chunk_strs = re.split(f'({pattern})', content) for chunk_str in chunk_strs: text.append({ "text": chunk_str, "label": 0 }) elif message['role'] == 'assistant': if self.prompt_style != 'plain': text.append({"text": f"\n{im_start}assistant\n", "label": 0}) text.append({"text": f"{message['content']}{im_end}", "label": 1}) else: text.append({"text": f"{message['content']}", "label": 1}) text.append({"text": self.addition_eod, "label": 1}) else: raise NotImplementedError if self.inference_mode: while text and text[-1]['label']==1: # 只要列表非空且最后一个元素满足条件 text.pop() # 就移除最后一个元素 return text def wrapped_tokenize(self, text): return self.tokenizer(text).input_ids def encode_text_sft(self, texts): # output enc_chunk enc_chunk = [] label_chunk = [] enc_length = 0 num_images = 0 media_helper = MediaIndicesHelper(tokenizer=self.tokenizer) for current_ti, text_chunk in enumerate(texts): text = text_chunk["text"] label = text_chunk["label"] if not media_helper.has_media(text): curr_chunk=self.wrapped_tokenize(text) if label == 1: enc_length += len(curr_chunk) enc_chunk += curr_chunk label_chunk += [label] * len(curr_chunk) else: enc_length += len(curr_chunk) enc_chunk += curr_chunk label_chunk += [label] * len(curr_chunk) # For media tokens else: add_length = media_helper.add_media( enc_chunk, text=text, tokenize_fn=self.wrapped_tokenize) enc_length += add_length label_chunk += [label] * add_length # enc_chunk.extend([self.media_tokens[text]] * self.media_lengths[text]) # enc_length += self.media_lengths[text] # label_chunk += [label] * self.media_lengths[text] num_images += 1 enc_chunk = torch.tensor(enc_chunk).long() media_offset = [] media_before = 0 for i,_ in enumerate([media_helper]): mo = _.cal_media_offset(enc_chunk) media_offset.append(torch.cat([(torch.ones(mo.shape[0],1)*media_before).long().to(mo.device), (mo+media_before).unsqueeze(1)], dim=1)) # L 2 media_before += _.len_images() media_offset = torch.stack(media_offset, dim=0) return { 'input_ids': enc_chunk.unsqueeze(0), 'media_offset': media_offset, } def __call__( self, messages, images: ImageInput = None, videos = None, max_length: Optional[int] = None, cut_enable=True, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, **kwargs ) -> mPLUGOwl3BatchFeature: if videos is not None and len(videos)>0: cut_enable=False assert images is None or len(images)==0, "We do not support image video interleaved yet" video_ptr = 0 for message in messages: text_list = message['content'].split('<|video|>') text = text_list[0] for next_text in text_list[1:]: text += '<|image|>'*len(videos[video_ptr]) text += next_text video_ptr += 1 message['content'] = text images = [frame for video in videos for frame in video ] self.check_media(images, messages) if images is not None: image_inputs = self.image_processor(images, cut_enable=cut_enable, return_tensors=return_tensors) if image_inputs.get('cut_shape',None) is not None: cut_shape = image_inputs['cut_shape'] image_token_ptr = 0 for message in messages: text_list = message['content'].split('<|image|>') text = text_list[0] for next_text in text_list[1:]: text += self.image_processor.cut_prompt_template(img_token='<|image|>', h=cut_shape[image_token_ptr][0], w=cut_shape[image_token_ptr][1]) text += next_text image_token_ptr += 1 message['content'] = text # text = ''.join([_['text'] for _ in text]) text = self.build_text_qwen(messages) model_inputs = self.encode_text_sft(text) if images is not None: model_inputs.update(image_inputs.data) if 'cut_shape' in model_inputs: model_inputs.pop('cut_shape') if 'cut_shape_indices' in model_inputs: model_inputs.pop('cut_shape_indices') return mPLUGOwl3BatchFeature(model_inputs) def check_media(self, images, messages): media_num = 0 if images is None else len(images) media_count = sum([message['content'].count('<|image|>') for message in messages]) assert media_num == media_count # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ output_ids = args[0] result_text = [] for result in output_ids: result = result[result != 0] if result[0] == self.tokenizer.bos_id: result = result[1:] if result[-1] == self.tokenizer.eos_id: result = result[:-1] result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip()) return result_text # return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ result = args[0] result = result[result != 0] if result[0] == self.tokenizer.bos_id: result = result[1:] if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id): result = result[:-1] return self.tokenizer.decode(result, *args[1:], **kwargs).strip() def _convert( self, input_str, max_inp_length: Optional[int] = None ): if self.version > 2.5 or not getattr(self.tokenizer, "add_bos_token", False): input_ids = self.tokenizer.encode(input_str) else: input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str) if max_inp_length is not None: input_ids = input_ids[:max_inp_length] input_ids = torch.tensor(input_ids, dtype=torch.int32) start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id) end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id) image_start_tokens = torch.where(start_cond)[0] image_start_tokens += 1 image_end_tokens = torch.where(end_cond)[0] valid_image_nums = max(len(image_start_tokens), len(image_end_tokens)) image_bounds = torch.hstack( [ image_start_tokens[:valid_image_nums].unsqueeze(-1), image_end_tokens[:valid_image_nums].unsqueeze(-1), ] ) return input_ids, image_bounds @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"): items = [] if isinstance(inputs[0], list): assert isinstance(inputs[0][0], torch.Tensor) for it in inputs: for tr in it: items.append(tr) else: assert isinstance(inputs[0], torch.Tensor) items = inputs batch_size = len(items) shape = items[0].shape dim = len(shape) assert dim <= 2 if max_length is None: max_length = 0 max_length = max(max_length, max(item.shape[-1] for item in items)) min_length = min(item.shape[-1] for item in items) dtype = items[0].dtype if dim == 0: return torch.stack([item for item in items], dim=0), [0] elif dim == 1: if max_length == min_length: return torch.stack([item for item in items], dim=0), [0] * batch_size tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value else: tensor = ( torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value ) padding_length = [] for i, item in enumerate(items): if dim == 1: if padding_side == "left": tensor[i, -len(item) :] = item.clone() else: tensor[i, : len(item)] = item.clone() elif dim == 2: if padding_side == "left": tensor[i, -len(item) :, :] = item.clone() else: tensor[i, : len(item), :] = item.clone() padding_length.append(tensor.shape[-1] - len(item)) return tensor, padding_length