--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: whisper_tiny_cs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: cs split: test args: cs metrics: - name: Wer type: wer value: 53.0400387724153 --- # whisper_tiny_cs This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6426 - Wer: 53.0400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.8297 | 1.45 | 100 | 0.8730 | 66.3524 | | 0.62 | 2.91 | 200 | 0.7188 | 57.8663 | | 0.4986 | 4.36 | 300 | 0.6426 | 53.0400 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3