import sagemaker | |
import boto3 | |
from sagemaker.huggingface import HuggingFace | |
try: | |
role = sagemaker.get_execution_role() | |
except ValueError: | |
iam = boto3.client('iam') | |
role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn'] | |
hyperparameters = { | |
'model_name_or_path':'Open-Orca/OpenOrca-Preview1-13B', | |
'output_dir':'/opt/ml/model' | |
# add your remaining hyperparameters | |
# more info here https://github.com/huggingface/transformers/tree/v4.26.0/examples/pytorch/language-modeling | |
} | |
# git configuration to download our fine-tuning script | |
git_config = {'repo': 'https://github.com/huggingface/transformers.git','branch': 'v4.26.0'} | |
# creates Hugging Face estimator | |
huggingface_estimator = HuggingFace( | |
entry_point='run_clm.py', | |
source_dir='./examples/pytorch/language-modeling', | |
instance_type='ml.p3.2xlarge', | |
instance_count=1, | |
role=role, | |
git_config=git_config, | |
transformers_version='4.26.0', | |
pytorch_version='1.13.1', | |
py_version='py39', | |
hyperparameters = hyperparameters | |
) | |
# starting the train job | |
huggingface_estimator.fit() |