File size: 1,451 Bytes
3e63238
45abfb8
 
 
 
 
 
 
3e63238
a360270
ea9d4e9
a360270
45abfb8
a360270
45abfb8
a360270
45abfb8
a360270
 
 
 
 
 
 
 
 
 
 
 
45abfb8
 
 
 
ea9d4e9
45abfb8
ea9d4e9
45abfb8
ea9d4e9
45abfb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9d4e9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
base_model:
- macadeliccc/MBX-7B-v3-DPO
- mlabonne/OmniBeagle-7B
tags:
- mergekit
- merge

---
# OmniCorso-7B

This model is a finetune of [flemmingmiguel/MBX-7B-v3](https://huggingface.co/flemmingmiguel/MBX-7B-v3) using jondurbin/truthy-dpo-v0.1

![MBX-v3-orca](MBX-v3-orca.png)

## Code Example 

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("macadeliccc/MBX-7B-v3-DPO")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/MBX-7B-v3-DPO")

messages = [
    {"role": "system", "content": "Respond to the users request like a pirate"},
    {"role": "user", "content": "Can you write me a quicksort algorithm?"}
]
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
```

The following models were included in the merge:
* [macadeliccc/MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO)
* [mlabonne/OmniBeagle-7B](https://huggingface.co/mlabonne/OmniBeagle-7B)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
  - sources:
      - model: mlabonne/OmniBeagle-7B
        layer_range: [0, 32]
      - model: macadeliccc/MBX-7B-v3-DPO
        layer_range: [0, 32]
merge_method: slerp
base_model: macadeliccc/MBX-7B-v3-DPO
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16


```