macadeliccc
commited on
Commit
•
1ed3a5f
1
Parent(s):
8242848
Update README.md
Browse files
README.md
CHANGED
@@ -46,29 +46,54 @@ Please give ideas and a detailed plan about how to assemble and train an army of
|
|
46 |
Switch the commented model definition to use in 4-bit. Should work with 9GB and still exceed the single 7B model by 5-6 points roughly
|
47 |
|
48 |
```python
|
|
|
49 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
50 |
|
51 |
# Load tokenizer and model
|
52 |
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/laser-dolphin-mixtral-2x7b-dpo")
|
53 |
model = AutoModelForCausalLM.from_pretrained("macadeliccc/laser-dolphin-mixtral-2x7b-dpo")
|
54 |
-
|
55 |
-
# Define
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
messages = [
|
57 |
-
{"role": "system", "content": "You are Dolphin, an AI assistant"},
|
58 |
-
{"role": "user", "content": "
|
59 |
]
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
# Generate a response
|
65 |
-
output = model.generate(**gen_input)
|
66 |
-
|
67 |
-
# Decode the generated tokens to a string
|
68 |
-
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
69 |
-
|
70 |
-
# Print the response
|
71 |
-
print("Response:", response)
|
72 |
```
|
73 |
|
74 |
[colab](https://colab.research.google.com/drive/1cmRhAkDWItV7utHNqNANVZnqDqQNsTUr?usp=sharing) with usage example
|
|
|
46 |
Switch the commented model definition to use in 4-bit. Should work with 9GB and still exceed the single 7B model by 5-6 points roughly
|
47 |
|
48 |
```python
|
49 |
+
# Import necessary libraries
|
50 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
51 |
|
52 |
# Load tokenizer and model
|
53 |
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/laser-dolphin-mixtral-2x7b-dpo")
|
54 |
model = AutoModelForCausalLM.from_pretrained("macadeliccc/laser-dolphin-mixtral-2x7b-dpo")
|
55 |
+
|
56 |
+
# Define a function to generate responses with adjustable hyperparameters
|
57 |
+
def generate_response(messages, max_length=50, num_return_sequences=1, temperature=1.0, top_k=50, top_p=1.0):
|
58 |
+
"""
|
59 |
+
Generate a response from the model based on the input chat messages and hyperparameters.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
messages (list): List of message dictionaries with 'role' and 'content'.
|
63 |
+
max_length (int): Maximum length of the model's response.
|
64 |
+
num_return_sequences (int): Number of response sequences to generate.
|
65 |
+
temperature (float): Sampling temperature for model generation.
|
66 |
+
top_k (int): The number of highest probability vocabulary tokens to keep for top-k filtering.
|
67 |
+
top_p (float): If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
str: The generated response from the model.
|
71 |
+
"""
|
72 |
+
# Apply chat template to input messages
|
73 |
+
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
74 |
+
|
75 |
+
# Generate a response
|
76 |
+
output = model.generate(**gen_input,
|
77 |
+
max_length=max_length,
|
78 |
+
num_return_sequences=num_return_sequences,
|
79 |
+
temperature=temperature,
|
80 |
+
top_k=top_k,
|
81 |
+
top_p=top_p)
|
82 |
+
|
83 |
+
# Decode the generated tokens to a string
|
84 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
85 |
+
|
86 |
+
return response
|
87 |
+
|
88 |
+
# Example chat messages
|
89 |
messages = [
|
90 |
+
{"role": "system", "content": "You are Dolphin, an AI assistant."},
|
91 |
+
{"role": "user", "content": "Write a quicksort algorithm in python"}
|
92 |
]
|
93 |
|
94 |
+
# Generate and print the response
|
95 |
+
response = generate_response(messages, max_length=100, temperature=0.8)
|
96 |
+
print("Response:\n", response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
```
|
98 |
|
99 |
[colab](https://colab.research.google.com/drive/1cmRhAkDWItV7utHNqNANVZnqDqQNsTUr?usp=sharing) with usage example
|