macildur's picture
update model card README.md
d1ff97d
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - sentiment140
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilbert-base-uncasedv1-finetuned-twitter-sentiment
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: sentiment140
          type: sentiment140
          config: sentiment140
          split: train
          args: sentiment140
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.82475
          - name: F1
            type: f1
            value: 0.8246033480256058
          - name: Precision
            type: precision
            value: 0.825087861584212
          - name: Recall
            type: recall
            value: 0.8016811137378513

distilbert-base-uncasedv1-finetuned-twitter-sentiment

This model is a fine-tuned version of distilbert-base-uncased on the sentiment140 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3985
  • Accuracy: 0.8247
  • F1: 0.8246
  • Precision: 0.8251
  • Recall: 0.8017

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 500 0.4049 0.8181 0.8178 0.8236 0.7862
No log 2.0 1000 0.3985 0.8247 0.8246 0.8251 0.8017

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.2
  • Tokenizers 0.12.1