File size: 11,622 Bytes
80ab0c2 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ac52176b880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ac52176b910>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ac52176b9a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ac52176ba30>", "_build": "<function ActorCriticPolicy._build at 0x7ac52176bac0>", "forward": "<function ActorCriticPolicy.forward at 0x7ac52176bb50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ac52176bbe0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ac52176bc70>", "_predict": "<function ActorCriticPolicy._predict at 0x7ac52176bd00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ac52176bd90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ac52176be20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ac52176beb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ac52833bd00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710519233578131115, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADqHSj5zWh8/+na0ve8Kpr6L6AM9tsCWPQAAAAAAAAAABgEQPhrhBj4VP9m9YQ2Bvni7H7umSWc9AAAAAAAAAABAnuO9db8ZPqoLvz33izm+pomBPG7Le70AAAAAAAAAABpuTj3hmpW67YeSs4XJZC6zDSU7pM+zMwAAgD8AAIA/ZoaZPFCAVz9h7Ly8rDG/vqNNF71dHhY8AAAAAAAAAAAzTVS9U5YKP69Cpj0/rZS+kXtGu8Je7bsAAAAAAAAAAGbLdb3ozBY//3YdPaxugr6/vTC8GGvHvAAAAAAAAAAAQKkbvl+dbT8nbau8YiStvhVzLr4iNqg9AAAAAAAAAACA+F09KXgvusbis7bJSioxpw6musq/0zUAAIA/AACAP2YIJTzBr04+U3QfPq8fmb6LBVI9OCqYvQAAAAAAAAAAwHBGvmOA6z6x2I8+a/6nvryW+jyE2g8+AAAAAAAAAACmCiw+wRQMP4P1VL5E5pK+IoV+PBU8ub0AAAAAAAAAAFoYxT0DRAQ/Wsm7vYK9Tr45rmq8QM6lvQAAAAAAAAAAs1WDPckezj5OBzu9JDpvvsCowbzpZpE9AAAAAAAAAACgZw4+I6ETP9XyEb2U9Kq+7hROu3Y9+ToAAAAAAAAAAPOJmD0soe48ss4WvpYBR75IYZq8wijHvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.983616, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9AUAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKz+gYgq3GMAWyUTQABjAF0lEdAqAFSkyk9EHV9lChoBkdAcQ2+Ofdyk2gHTQwBaAhHQKgBrof0Vah1fZQoaAZHQG53zlDF6zFoB00PAWgIR0CoAcSRr8BNdX2UKGgGR0BwHmFM7EHdaAdNDwFoCEdAqAHFOqNp/XV9lChoBkdAbZ46RQrMDGgHTRMBaAhHQKgB4S+xnnN1fZQoaAZHQHBKyc0+C9RoB00WAWgIR0CoAfThP0qZdX2UKGgGR0BzLYdlum78aAdNGwFoCEdAqAITpRoAXHV9lChoBkdAcGCciW3Sa2gHTR8BaAhHQKgCKxXXAdp1fZQoaAZHQG7Gd2gWac9oB00gAWgIR0CoAjDujRD1dX2UKGgGR0ByGPG4qgAZaAdNIQFoCEdAqAI3lCCz1XV9lChoBkdAb1aHAymALGgHTScBaAhHQKgCU2P1ct51fZQoaAZHQHJh110T101oB000AWgIR0CoAosrNGExdX2UKGgGR0ByYWDmKZUlaAdNNQFoCEdAqAKRKvmoznV9lChoBkdAb38y+pOvdWgHTTcBaAhHQKgCmeV9nbt1fZQoaAZHQHF63dXT3IxoB004AWgIR0CoApx59mYjdX2UKGgGR0BwtYB1cMVlaAdNPgFoCEdAqAKwmw7kn3V9lChoBkdATngaxX4j8mgHS7VoCEdAqASf0yxiX3V9lChoBkdAcr/fhddE9mgHS95oCEdAqAVxFEy+H3V9lChoBkdAcb6N4JNTLmgHTQ0BaAhHQKgGVndweeZ1fZQoaAZHQHKKHPJJXhhoB0v/aAhHQKgGnp1RtP51fZQoaAZHQHBNHiBGx2VoB00OAWgIR0CoBuIAOrhjdX2UKGgGR0Byu6YeDFqBaAdL+mgIR0CoB8yflIVedX2UKGgGR0ByhuioKlYVaAdNAwFoCEdAqAfnpyIYWXV9lChoBkdAcoU27Wd3CGgHTRABaAhHQKgIOVzIV/N1fZQoaAZHQG9RVgH/tIFoB00uAWgIR0CoCHjhLoOhdX2UKGgGR0BxbSuX/o7naAdNHQFoCEdAqAibronrp3V9lChoBkdAcVV8RtgrpmgHTS0BaAhHQKgItBt1p0x1fZQoaAZHQHKbJL/S6UdoB01NAWgIR0CoCNkX+ERKdX2UKGgGR0BvnzuYx+KCaAdNPwFoCEdAqAjg4KhL5HV9lChoBkdAcGkK7I1cdGgHTTsBaAhHQKgI7hUBGQV1fZQoaAZHQHKt8aOxSpBoB01YAWgIR0CoCY6sySFHdX2UKGgGR0Bw2oswtapxaAdNVgFoCEdAqAoD5M10knV9lChoBkdAcnm+Pikwe2gHTSABaAhHQKgLqngHeJp1fZQoaAZHQHB/HCGetjloB00bAWgIR0CoDE9nCfpVdX2UKGgGR0BwolXp4bCKaAdNDAFoCEdAqAzdm6GxlnV9lChoBkdAcNQc+aBqbmgHTSIBaAhHQKgNMjQiRnx1fZQoaAZHQG5+dLYf4h5oB00oAWgIR0CoDnXT3IuHdX2UKGgGR0BwtvvE0iyIaAdNKgFoCEdAqA6YLZzxPXV9lChoBkdAb8payrxRVWgHTScBaAhHQKgPFigCfYl1fZQoaAZHQHCwzZQHiWFoB00hAWgIR0CoDyqB/ZuidX2UKGgGR0ByVnrVvuPWaAdNNwFoCEdAqA9ngJkXlHV9lChoBkdAcAsVYZEUkGgHTSwBaAhHQKgPgBlMAWB1fZQoaAZHQG5PgkLQXyloB001AWgIR0CoD4Xm/336dX2UKGgGR0BvBqGxlg+haAdNGAFoCEdAqA+oMpgCwXV9lChoBkdAbfkJ8fFJhGgHTXUBaAhHQKgPslt0mt11fZQoaAZHQHHo+Vkc0choB006AWgIR0CoD7iAUcn3dX2UKGgGR0By/9JEpiI+aAdNLQFoCEdAqBBYVXV9W3V9lChoBkdAcG3jGkvboWgHTXsBaAhHQKgQcOq//Nt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 254, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |