--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: modernbert-financial-sentiment results: [] --- # modernbert-financial-sentiment This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the twitter_financial dataset. It achieves the following results on the evaluation set: - Loss: 0.4501 - Accuracy: 0.8558 - F1: 0.8598 - Precision: 0.8705 - Recall: 0.8558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4274 | 1.0 | 1193 | 0.3893 | 0.8752 | 0.8787 | 0.8887 | 0.8752 | | 0.2062 | 2.0 | 2386 | 0.4430 | 0.8928 | 0.8921 | 0.8918 | 0.8928 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0