--- language: - ta license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: whisper-base-tamil results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: ta split: test args: ta metrics: - name: Wer type: wer value: 29.53271028037383 --- # whisper-base-tamil This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.6365 - Wer Ortho: 72.2136 - Wer: 29.5327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.003 | 20.0 | 500 | 0.6365 | 72.2136 | 29.5327 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.14.0 - Tokenizers 0.13.3