Upload 12 files
Browse files- 3x_first_seg_yolov5l-int8_segment_0_of_2_edgetpu.tflite +3 -0
- 3x_first_seg_yolov5l-int8_segment_1_of_2_edgetpu.tflite +3 -0
- all_segments_yolov5l-int8_edgetpu.tflite +3 -0
- all_segments_yolov5l-int8_segment_0_of_3_edgetpu.tflite +3 -0
- all_segments_yolov5l-int8_segment_1_of_3_edgetpu.tflite +3 -0
- all_segments_yolov5l-int8_segment_2_of_3_edgetpu.tflite +3 -0
- all_segments_yolov8n_352_608px_edgetpu.tflite +3 -0
- all_segments_yolov8n_384_640px_edgetpu.tflite +3 -0
- all_segments_yolov8s_384_608px_edgetpu.tflite +3 -0
- dumb_yolov5l-int8_segment_0_of_2_edgetpu.tflite +3 -0
- dumb_yolov5l-int8_segment_1_of_2_edgetpu.tflite +3 -0
- segment_and_test.py +447 -0
3x_first_seg_yolov5l-int8_segment_0_of_2_edgetpu.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7387092fd873e805240a61881cda3302c52109cdfc745f1fcdcf73dda75465f7
|
3 |
+
size 33500640
|
3x_first_seg_yolov5l-int8_segment_1_of_2_edgetpu.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0bf32bfc27d442bc00f67bd2f5eaf26056daab553758ff1f3f5849da1a29861
|
3 |
+
size 15636224
|
all_segments_yolov5l-int8_edgetpu.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08c3e11fd79704aa166096080432f5ad31a9cc4a934d170580b24acbb245d7db
|
3 |
+
size 49246112
|
all_segments_yolov5l-int8_segment_0_of_3_edgetpu.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:962166de27dbd083e807fe052c7ba35df96737952d25399fb9083334079d7865
|
3 |
+
size 11043712
|
all_segments_yolov5l-int8_segment_1_of_3_edgetpu.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:acc1e7732872ac2401c291b97b17d22c5ce2db58e4afc49a4ff1f8aa84dec70f
|
3 |
+
size 21701888
|
all_segments_yolov5l-int8_segment_2_of_3_edgetpu.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:200be3ddb51265022ce0caad8c184f8c4c8c2079f7a433d6ef8efd3aa7fb9973
|
3 |
+
size 16404800
|
all_segments_yolov8n_352_608px_edgetpu.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c6d143218d28353da1271e2e1150a86e9e557040360ad2038d298debcf42f99
|
3 |
+
size 4062609
|
all_segments_yolov8n_384_640px_edgetpu.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e37eb6264cbd77a82cd9f73495000d96a9a36fbc46db59f018682eb75960820
|
3 |
+
size 3789856
|
all_segments_yolov8s_384_608px_edgetpu.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcfe313f9994623af61ef44329648961365e79714dcf18ce533c8e3a41f70864
|
3 |
+
size 11886272
|
dumb_yolov5l-int8_segment_0_of_2_edgetpu.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b906754242f3836a1d7a1fff1642feedf127c2c88a70dcf53017963a3a42ec6
|
3 |
+
size 24789888
|
dumb_yolov5l-int8_segment_1_of_2_edgetpu.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4abcc82a8d4bb6ae79544569662fdf75c5135e96095fac17f4808ad5f6e92cf8
|
3 |
+
size 24305824
|
segment_and_test.py
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import time
|
4 |
+
import shutil
|
5 |
+
import re
|
6 |
+
import hashlib
|
7 |
+
|
8 |
+
#'''
|
9 |
+
fn_list = [
|
10 |
+
'tf2_ssd_mobilenet_v2_coco17_ptq',
|
11 |
+
'ssd_mobilenet_v2_coco_quant_postprocess',
|
12 |
+
'ssdlite_mobiledet_coco_qat_postprocess',
|
13 |
+
'ssd_mobilenet_v1_coco_quant_postprocess',
|
14 |
+
'tf2_ssd_mobilenet_v1_fpn_640x640_coco17_ptq',
|
15 |
+
'efficientdet_lite0_320_ptq',
|
16 |
+
'efficientdet_lite1_384_ptq',
|
17 |
+
'efficientdet_lite2_448_ptq',
|
18 |
+
'efficientdet_lite3_512_ptq',
|
19 |
+
'efficientdet_lite3x_640_ptq',
|
20 |
+
'yolov5n-int8',
|
21 |
+
'yolov5s-int8',
|
22 |
+
'yolov5m-int8',
|
23 |
+
'yolov5l-int8',
|
24 |
+
|
25 |
+
['yolov8n_416_640px', 'yolov8n_384_640px', 'yolov8n_384_608px', 'yolov8n_352_608px'],
|
26 |
+
['yolov8s_416_640px', 'yolov8s_384_640px', 'yolov8s_384_608px', 'yolov8s_352_608px'],
|
27 |
+
['yolov8m_416_640px', 'yolov8m_384_640px', 'yolov8m_384_608px', 'yolov8m_352_608px'],
|
28 |
+
['yolov8l_416_640px', 'yolov8l_384_640px', 'yolov8l_384_608px', 'yolov8l_352_608px'],
|
29 |
+
|
30 |
+
['yolov9t_416_640px', 'yolov9t_384_640px', 'yolov9t_384_608px', 'yolov9t_352_608px', 'yolov9t_352_576px'],
|
31 |
+
['yolov9s_416_640px', 'yolov9s_384_640px', 'yolov9s_384_608px', 'yolov9s_352_608px', 'yolov9s_352_576px'],
|
32 |
+
['yolov9m_416_640px', 'yolov9m_384_640px', 'yolov9m_384_608px', 'yolov9m_352_608px', 'yolov9m_352_576px'],
|
33 |
+
['yolov9c_416_640px', 'yolov9c_384_640px', 'yolov9c_384_608px', 'yolov9c_352_608px', 'yolov9c_352_576px'],
|
34 |
+
|
35 |
+
'ipcam-general-v8'
|
36 |
+
]
|
37 |
+
|
38 |
+
custom_args = {
|
39 |
+
'tf2_ssd_mobilenet_v2_coco17_ptq': {
|
40 |
+
2: ["--diff_threshold_ns","100000"]},
|
41 |
+
'ssd_mobilenet_v2_coco_quant_postprocess': {
|
42 |
+
5: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs","--partition_search_step","3"]},
|
43 |
+
'ssdlite_mobiledet_coco_qat_postprocess': {
|
44 |
+
2: ["--diff_threshold_ns","100000"]},
|
45 |
+
'efficientdet_lite3_512_ptq': {
|
46 |
+
2: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs"],
|
47 |
+
3: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs"],
|
48 |
+
4: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs"],
|
49 |
+
5: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs"],
|
50 |
+
6: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs"],
|
51 |
+
7: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs"]},
|
52 |
+
'efficientdet_lite3x_640_ptq': {
|
53 |
+
5: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs","--partition_search_step","2"],
|
54 |
+
6: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs","--partition_search_step","3"]},
|
55 |
+
'yolov5n-int8': {
|
56 |
+
5: ["--partition_search_step","2"],
|
57 |
+
6: ["--partition_search_step","2"],
|
58 |
+
7: ["--partition_search_step","2"],
|
59 |
+
8: ["--partition_search_step","2"]},
|
60 |
+
'yolov5s-int8': {
|
61 |
+
5: ["--partition_search_step","2"],
|
62 |
+
6: ["--partition_search_step","2"],
|
63 |
+
7: ["--partition_search_step","2"],
|
64 |
+
8: ["--partition_search_step","2"]},
|
65 |
+
'yolov5m-int8': {
|
66 |
+
5: ["--partition_search_step","2"],
|
67 |
+
6: ["--partition_search_step","2"],
|
68 |
+
7: ["--partition_search_step","2"],
|
69 |
+
8: ["--partition_search_step","2"]},
|
70 |
+
'yolov5l-int8': {
|
71 |
+
5: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs","--partition_search_step","2"],
|
72 |
+
6: ["--partition_search_step","2"],
|
73 |
+
7: ["--partition_search_step","2"],
|
74 |
+
8: ["--partition_search_step","2"]},
|
75 |
+
'yolov8m_416_640px': {
|
76 |
+
5: ["--partition_search_step","2"],
|
77 |
+
6: ["--partition_search_step","3"],
|
78 |
+
7: ["--partition_search_step","4"],
|
79 |
+
8: ["--partition_search_step","5"]},
|
80 |
+
'yolov8l_416_640px': {
|
81 |
+
4: ["--partition_search_step","2"],
|
82 |
+
5: ["--partition_search_step","2"],
|
83 |
+
6: ["--partition_search_step","3"],
|
84 |
+
7: ["--partition_search_step","4"],
|
85 |
+
8: ["--partition_search_step","5"]},
|
86 |
+
'yolov9c_416_640px': {
|
87 |
+
2: ["--delegate_search_step","10"]},
|
88 |
+
'yolov9c_384_640px': {
|
89 |
+
1: ["--delegate_search_step","10"],
|
90 |
+
2: ["--delegate_search_step","10"]},
|
91 |
+
'yolov9c_384_608px': {
|
92 |
+
1: ["--delegate_search_step","10"],
|
93 |
+
2: ["--delegate_search_step","10"]},
|
94 |
+
'yolov9c_352_608px': {
|
95 |
+
1: ["--delegate_search_step","10"],
|
96 |
+
2: ["--delegate_search_step","10"]},
|
97 |
+
'yolov9c_352_576px': {
|
98 |
+
1: ["--delegate_search_step","10"],
|
99 |
+
2: ["--delegate_search_step","10"]}}#'''
|
100 |
+
|
101 |
+
'''
|
102 |
+
fn_list = [
|
103 |
+
# 'yolov5n-int8',
|
104 |
+
# 'yolov5s-int8',
|
105 |
+
# 'yolov5m-int8',
|
106 |
+
# 'yolov5l-int8',
|
107 |
+
# 'yolov8n_full_integer_quant',
|
108 |
+
# 'yolov8s_full_integer_quant',
|
109 |
+
# 'yolov8m_full_integer_quant',
|
110 |
+
# 'yolov8l_full_integer_quant',
|
111 |
+
# 'yolov8n_480px',
|
112 |
+
# 'yolov8s_480px',
|
113 |
+
# 'yolov8m_480px',
|
114 |
+
# 'yolov8l_480px',
|
115 |
+
# 'yolov8n_512px',
|
116 |
+
# 'yolov8s_512px',
|
117 |
+
# 'yolov8m_512px',
|
118 |
+
# 'yolov8l_512px',
|
119 |
+
# 'yolov8s_544px',
|
120 |
+
# 'yolov8m_544px', # lg 1st seg
|
121 |
+
# 'yolov8l_544px', # lg 1st seg
|
122 |
+
# 'yolov8s_576px',
|
123 |
+
# 'yolov8m_576px', # lg 1st seg
|
124 |
+
# 'yolov8l_576px', # lg 1st seg
|
125 |
+
# 'yolov8s_608px',
|
126 |
+
# 'yolov8m_608px', # lg 1st seg
|
127 |
+
# 'yolov8l_608px',
|
128 |
+
# 'yolov8n_640px',
|
129 |
+
# 'yolov8s_640px',
|
130 |
+
# 'yolov8m_640px', # lg 1st seg
|
131 |
+
# 'yolov8l_640px', # lg 1st seg
|
132 |
+
# 'yolov8n_416_640px', # lg 1st seg
|
133 |
+
'yolov8s_416_640px', # lg 1st seg
|
134 |
+
'yolov8m_416_640px', # lg 1st seg
|
135 |
+
'yolov8l_416_640px'] # lg 1st seg
|
136 |
+
# 'ipcam-general-v8'] #'''
|
137 |
+
|
138 |
+
'''
|
139 |
+
custom_args = {
|
140 |
+
'yolov8n_full_integer_quant': {
|
141 |
+
2: ["--diff_threshold_ns","100000"],
|
142 |
+
3: ["--diff_threshold_ns","200000"]},
|
143 |
+
'yolov8s_full_integer_quant': {
|
144 |
+
2: ["--diff_threshold_ns","200000"]},
|
145 |
+
'yolov8l_full_integer_quant': {
|
146 |
+
5: ["--partition_search_step","2"]},
|
147 |
+
'yolov8n_480px': {
|
148 |
+
2: ["--diff_threshold_ns","100000"],
|
149 |
+
3: ["--diff_threshold_ns","200000"]},
|
150 |
+
'yolov8s_480px': {
|
151 |
+
2: ["--diff_threshold_ns","200000"]},
|
152 |
+
'yolov8m_480px': {
|
153 |
+
5: ["--partition_search_step","2"]},
|
154 |
+
'yolov8n_512px': {
|
155 |
+
2: ["--diff_threshold_ns","1200000"],
|
156 |
+
3: ["--diff_threshold_ns","600000"]},
|
157 |
+
'yolov8s_512px': {
|
158 |
+
2: ["--diff_threshold_ns","200000"]},
|
159 |
+
'yolov8m_640px': {
|
160 |
+
2: ["--diff_threshold_ns","200000", "--undefok=timeout_sec","--timeout_sec=360"]},
|
161 |
+
'yolov8l_640px': {
|
162 |
+
2: ["--undefok=timeout_sec","--timeout_sec=360"]},
|
163 |
+
'yolov8n_416_640px': {
|
164 |
+
5: ["--partition_search_step","2"]},
|
165 |
+
'yolov8s_416_640px': {
|
166 |
+
5: ["--partition_search_step","2"]},
|
167 |
+
'yolov8m_416_640px': {
|
168 |
+
5: ["--initial_lower_bound_ns","44658311","--initial_upper_bound_ns","45466138","--partition_search_step","2"],
|
169 |
+
6: ["--initial_lower_bound_ns","39444004","--initial_upper_bound_ns","40071927","--partition_search_step","3"],
|
170 |
+
7: ["--initial_lower_bound_ns","36028652","--initial_upper_bound_ns","37012866","--partition_search_step","4"],
|
171 |
+
8: ["--initial_lower_bound_ns","33892323","--initial_upper_bound_ns","34856571","--partition_search_step","5"]},
|
172 |
+
'yolov8l_416_640px': {
|
173 |
+
5: ["--initial_lower_bound_ns","82297482","--initial_upper_bound_ns","82892528","--partition_search_step","2"],
|
174 |
+
6: ["--initial_lower_bound_ns","69966647","--initial_upper_bound_ns","70757195","--partition_search_step","3"],
|
175 |
+
7: ["--initial_lower_bound_ns","69067450","--initial_upper_bound_ns","69599451","--partition_search_step","4"],
|
176 |
+
8: ["--initial_lower_bound_ns","55889854","--initial_upper_bound_ns","56444625","--partition_search_step","5"]}}#'''
|
177 |
+
|
178 |
+
'''
|
179 |
+
diff_threshold_ns = {
|
180 |
+
'yolov8s_416_640px': {
|
181 |
+
2: 4000000},
|
182 |
+
'yolov8m_416_640px': {
|
183 |
+
4: 40000000,
|
184 |
+
5: 30000000},
|
185 |
+
'yolov8l_416_640px': {
|
186 |
+
7: 90000000,
|
187 |
+
8: 70000000}}#'''
|
188 |
+
|
189 |
+
'''
|
190 |
+
custom_args = {
|
191 |
+
'yolov8m_416_640px': {
|
192 |
+
5: ["--partition_search_step","2"],
|
193 |
+
6: ["--partition_search_step","3"],
|
194 |
+
7: ["--partition_search_step","4"],
|
195 |
+
8: ["--partition_search_step","5"]},
|
196 |
+
'yolov8l_416_640px': {
|
197 |
+
4: ["--partition_search_step","2"],
|
198 |
+
5: ["--partition_search_step","2"],
|
199 |
+
6: ["--partition_search_step","3"],
|
200 |
+
7: ["--partition_search_step","4"],
|
201 |
+
8: ["--partition_search_step","5"]}}#'''
|
202 |
+
|
203 |
+
seg_dir = "/home/seth/Documents/all_segments/"
|
204 |
+
seg_types = ['', '2x_first_seg/', '15x_first_seg/', '3x_first_seg/', '4x_first_seg/', '15x_last_seg/', '2x_last_seg/', 'dumb/']
|
205 |
+
|
206 |
+
|
207 |
+
def seg_exists(filename, segment_type, segment_count):
|
208 |
+
if segment_type == 'orig_code':
|
209 |
+
segment_type = ''
|
210 |
+
|
211 |
+
if segment_count == 1:
|
212 |
+
seg_list = [seg_dir+segment_type+filename+'_edgetpu.tflite']
|
213 |
+
else:
|
214 |
+
seg_list = [seg_dir+segment_type+filename+'_segment_{}_of_{}_edgetpu.tflite'.format(i, segment_count) for i in range(segment_count)]
|
215 |
+
return (seg_list, any([True for s in seg_list if not os.path.exists(s)]))
|
216 |
+
|
217 |
+
MAX_TPU_COUNT = 5
|
218 |
+
|
219 |
+
'''
|
220 |
+
# Generate segment files
|
221 |
+
for sn in range(1,MAX_TPU_COUNT+1):
|
222 |
+
flat_fn_list = []
|
223 |
+
for fn in fn_list:
|
224 |
+
if isinstance(fn, list):
|
225 |
+
flat_fn_list += fn
|
226 |
+
else:
|
227 |
+
flat_fn_list.append(fn)
|
228 |
+
|
229 |
+
|
230 |
+
for fn in flat_fn_list:
|
231 |
+
for seg_type in seg_types:
|
232 |
+
seg_list, file_missing = seg_exists(fn, seg_type, sn)
|
233 |
+
|
234 |
+
if not file_missing:
|
235 |
+
continue
|
236 |
+
|
237 |
+
if sn == 1:
|
238 |
+
cmd = ["/usr/bin/edgetpu_compiler","-s","-d","--out_dir",seg_dir+seg_type,seg_dir+fn+".tflite"]
|
239 |
+
elif 'dumb' in seg_type:
|
240 |
+
cmd = ["/usr/bin/edgetpu_compiler","-s","-d","-n",str(sn),"--out_dir",seg_dir+seg_type,seg_dir+fn+".tflite"]
|
241 |
+
elif 'saturated' in seg_type:
|
242 |
+
try:
|
243 |
+
cmd = ["libcoral/out/k8/tools/partitioner/partition_with_profiling","--output_dir",seg_dir+seg_type,"--edgetpu_compiler_binary",
|
244 |
+
"/usr/bin/edgetpu_compiler","--model_path",seg_dir+fn+".tflite","--num_segments",str(sn),
|
245 |
+
"--diff_threshold_ns", str(diff_threshold_ns[fn][sn])]
|
246 |
+
except:
|
247 |
+
# Note: "Saturated segments" is an attempt to load as much of the model as possible onto segments
|
248 |
+
# while ignoring the latency incurred by slower segments. We assume we'll be able to "speed up"
|
249 |
+
# these slower segments simply by running more copies of them. The faster segments ideally will
|
250 |
+
# be optimized to all run at roughly the same speed. Thus the overall inference throughput will
|
251 |
+
# be limited by how many multiples of the slowest segment we can run.
|
252 |
+
#
|
253 |
+
# diff_threshold_ns key entries only exist where we want to create "saturated segments". More would
|
254 |
+
# mean the model is too sparse across segments. We create saturated segments by adjusting the
|
255 |
+
# diff_threshold_ns until the compiler just starts pushing parameters off of the TPUs. Ideally
|
256 |
+
# this will result in one or two slow segments and the rest of the segments are roughly equally
|
257 |
+
# fast.
|
258 |
+
continue
|
259 |
+
|
260 |
+
else:
|
261 |
+
if '2x_first_seg' in seg_type:
|
262 |
+
#+++ b/coral/tools/partitioner/profiling_based_partitioner.cc
|
263 |
+
#@@ -190,6 +190,8 @@ int64_t ProfilingBasedPartitioner::PartitionCompileAndAnalyze(
|
264 |
+
# latencies = std::get<2>(coral::BenchmarkPartitionedModel(
|
265 |
+
# tmp_edgetpu_segment_paths, &edgetpu_contexts(), kNumInferences));
|
266 |
+
#+ latencies[0] /= 2;
|
267 |
+
# if (kUseCache) {
|
268 |
+
# for (int i = 0; i < num_segments_; ++i) {
|
269 |
+
# segment_latency_cache_[{segment_starts[i], num_ops[i]}] = latencies[i];
|
270 |
+
#@@ -211,10 +213,11 @@ std::pair<int64_t, int64_t> ProfilingBasedPartitioner::GetBounds(
|
271 |
+
# num_segments_, /*search_delegate=*/true,
|
272 |
+
# delegate_search_step))
|
273 |
+
# << "Can not compile initial partition.";
|
274 |
+
#- const auto latencies = std::get<2>(coral::BenchmarkPartitionedModel(
|
275 |
+
#+ auto latencies = std::get<2>(coral::BenchmarkPartitionedModel(
|
276 |
+
# tmp_edgetpu_segment_paths, &edgetpu_contexts(), kNumInferences));
|
277 |
+
#
|
278 |
+
# DeleteFolder(tmp_dir);
|
279 |
+
#+ latencies[0] /= 4;
|
280 |
+
#
|
281 |
+
# int64_t lower_bound = std::numeric_limits<int64_t>::max(), upper_bound = 0;
|
282 |
+
# for (auto latency : latencies) {
|
283 |
+
#
|
284 |
+
# sudo make DOCKER_IMAGE="ubuntu:20.04" DOCKER_CPUS="k8" DOCKER_TARGETS="tools" docker-build
|
285 |
+
|
286 |
+
#// Encourage each segment slower than the previous to spread out the bottlenecks
|
287 |
+
#double latency_adjust = 1.0;
|
288 |
+
#for (int i = 1; i < num_segments_; ++i)
|
289 |
+
#{
|
290 |
+
# if (latencies[i-1] < latencies[i])
|
291 |
+
# latency_adjust *= 0.97;
|
292 |
+
# latencies[i-1] *= latency_adjust;
|
293 |
+
#}
|
294 |
+
#latencies[num_segments_-1] *= latency_adjust;
|
295 |
+
|
296 |
+
partition_with_profiling_dir = "libcoral/tools.2"
|
297 |
+
elif '15x_first_seg' in seg_type:
|
298 |
+
partition_with_profiling_dir = "libcoral/tools.15"
|
299 |
+
elif '133x_first_seg' in seg_type:
|
300 |
+
partition_with_profiling_dir = "libcoral/tools.133"
|
301 |
+
elif '166x_first_seg' in seg_type:
|
302 |
+
partition_with_profiling_dir = "libcoral/tools.166"
|
303 |
+
elif '3x_first_seg' in seg_type:
|
304 |
+
partition_with_profiling_dir = "libcoral/tools.3"
|
305 |
+
elif '4x_first_seg' in seg_type:
|
306 |
+
partition_with_profiling_dir = "libcoral/tools.4"
|
307 |
+
elif '15x_last_seg' in seg_type:
|
308 |
+
partition_with_profiling_dir = "libcoral/tools.last15"
|
309 |
+
elif '2x_last_seg' in seg_type:
|
310 |
+
partition_with_profiling_dir = "libcoral/tools.last2"
|
311 |
+
elif '125x_last_inc_seg/' == seg_type:
|
312 |
+
partition_with_profiling_dir = "libcoral/tools.last125_inc_seg"
|
313 |
+
elif '2x_first_125x_last_inc_seg/' == seg_type:
|
314 |
+
partition_with_profiling_dir = "libcoral/tools.2last125_inc_seg"
|
315 |
+
elif 'inc_seg/' == seg_type:
|
316 |
+
partition_with_profiling_dir = "libcoral/tools.inc_seg"
|
317 |
+
else:
|
318 |
+
partition_with_profiling_dir = "libcoral/tools.orig"
|
319 |
+
|
320 |
+
cmd = [partition_with_profiling_dir+"/partitioner/partition_with_profiling","--output_dir",seg_dir+seg_type,"--edgetpu_compiler_binary",
|
321 |
+
"/usr/bin/edgetpu_compiler","--model_path",seg_dir+fn+".tflite","--num_segments",str(sn)]
|
322 |
+
|
323 |
+
try:
|
324 |
+
cmd += custom_args[fn][sn]
|
325 |
+
except:
|
326 |
+
pass
|
327 |
+
|
328 |
+
print(cmd)
|
329 |
+
subprocess.run(cmd)#'''
|
330 |
+
|
331 |
+
|
332 |
+
seg_types += ['133x_first_seg/', '166x_first_seg/', 'inc_seg/', '125x_last_inc_seg/', '2x_first_125x_last_inc_seg/']
|
333 |
+
|
334 |
+
# Test timings
|
335 |
+
fin_timings = {}
|
336 |
+
fin_fnames = {}
|
337 |
+
for fn in fn_list:
|
338 |
+
if isinstance(fn, list):
|
339 |
+
fn_size_list = fn
|
340 |
+
fn = fn[0]
|
341 |
+
else:
|
342 |
+
fn_size_list = [fn]
|
343 |
+
|
344 |
+
timings = []
|
345 |
+
fin_timings[fn] = {}
|
346 |
+
fin_fnames[fn] = {}
|
347 |
+
|
348 |
+
for num_tpus in range(1,MAX_TPU_COUNT+1):
|
349 |
+
|
350 |
+
for this_fn in fn_size_list:
|
351 |
+
for seg_type in seg_types:
|
352 |
+
max_seg = 0
|
353 |
+
for sn in range(1,num_tpus+1):
|
354 |
+
# No need to run many slow single TPU tests, just one
|
355 |
+
if sn == 1 and seg_type != '':
|
356 |
+
continue
|
357 |
+
|
358 |
+
# Test against orig code
|
359 |
+
exe_file = "/home/seth/CodeProject.AI-ObjectDetectionCoral/objectdetection_coral_multitpu.py"
|
360 |
+
|
361 |
+
# Get file types
|
362 |
+
seg_list, file_missing = seg_exists(this_fn, seg_type, sn)
|
363 |
+
|
364 |
+
if file_missing:
|
365 |
+
continue
|
366 |
+
max_seg = sn
|
367 |
+
|
368 |
+
cmd = ["python3.9",exe_file,"--model"] + \
|
369 |
+
seg_list + ["--labels","coral/pycoral/test_data/coco_labels.txt","--input","/home/seth/coral/pycoral/test_data/grace_hopper.bmp",
|
370 |
+
"--count","4000","--num-tpus",str(num_tpus)]
|
371 |
+
print(cmd)
|
372 |
+
|
373 |
+
# Clock runtime
|
374 |
+
#start_time = time.perf_counter()
|
375 |
+
#subprocess.run(cmd)
|
376 |
+
#ms_time = 1000 * (time.perf_counter() - start_time) / 4000 # ms * total time / iterations
|
377 |
+
|
378 |
+
# Last quarter runtime
|
379 |
+
try:
|
380 |
+
c = subprocess.run(cmd, check=True, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=3600*2)
|
381 |
+
except subprocess.TimeoutExpired:
|
382 |
+
print("Timed out!")
|
383 |
+
continue
|
384 |
+
print(c.stdout)
|
385 |
+
print(c.stderr)
|
386 |
+
ms_time = float(re.compile(r'threads; ([\d\.]+)ms ea').findall(c.stderr)[0])
|
387 |
+
mpps_time = float(re.compile(r'; ([\d\.]+) tensor MPx').findall(c.stderr)[0])
|
388 |
+
|
389 |
+
timings.append((ms_time, num_tpus, this_fn, seg_type, sn, mpps_time))
|
390 |
+
subprocess.run(['uptime'])
|
391 |
+
|
392 |
+
timings = sorted(timings, key=lambda t: t[5], reverse=True)
|
393 |
+
if not any(timings):
|
394 |
+
continue
|
395 |
+
|
396 |
+
# Print the top ten
|
397 |
+
print(f"TIMINGS FOR {num_tpus} TPUs AND {fn} MODEL:")
|
398 |
+
for t in range(min(10,len(timings))):
|
399 |
+
print(timings[t])
|
400 |
+
|
401 |
+
# Get best segments, but
|
402 |
+
# Skip if it's not 'orig_code' and > 1 segment
|
403 |
+
t = [t for t in timings if t[3] != 'orig_code'][0]
|
404 |
+
fin_timings[fn][num_tpus] = timings[0]
|
405 |
+
|
406 |
+
# Add segment to the final list
|
407 |
+
# Copy best to local dir
|
408 |
+
seg_list, _ = seg_exists(t[2], t[3], t[4])
|
409 |
+
fin_fnames[fn][num_tpus] = []
|
410 |
+
for s in seg_list:
|
411 |
+
file_components = os.path.normpath(s).split("/")
|
412 |
+
out_fname = file_components[-2]+"_"+file_components[-1]
|
413 |
+
shutil.copyfile(s, out_fname)
|
414 |
+
checksum = hashlib.md5(open(out_fname,'rb').read()).hexdigest()
|
415 |
+
fin_fnames[fn][num_tpus].append((out_fname, checksum))
|
416 |
+
|
417 |
+
# Create archive for this model / TPU count
|
418 |
+
#if len(fin_fnames[fn][num_tpus]) > 1 or num_tpus == 1:
|
419 |
+
# zip_name = f'objectdetection-{fn}-{num_tpus}-edgetpu.zip'
|
420 |
+
# cmd = ['zip', '-9', zip_name] + fin_fnames[fn][num_tpus]
|
421 |
+
# print(cmd)
|
422 |
+
# if os.path.exists(zip_name):
|
423 |
+
# os.unlink(zip_name)
|
424 |
+
# subprocess.run(cmd)
|
425 |
+
|
426 |
+
print(fin_timings)
|
427 |
+
print(fin_fnames)
|
428 |
+
|
429 |
+
# Pretty print all of the segments we've timed and selected
|
430 |
+
for fn, v in fin_fnames.items():
|
431 |
+
print(" '%s': {" % fn)
|
432 |
+
for tpu_count, timing in fin_timings[fn].items():
|
433 |
+
if tpu_count in v:
|
434 |
+
seg_str = f"{len(v[tpu_count])} segments"
|
435 |
+
else:
|
436 |
+
seg_str = "1 segment "
|
437 |
+
|
438 |
+
fps = 1000.0 / timing[0]
|
439 |
+
|
440 |
+
print(f"#{timing[0]:6.1f} ms/inference ({fps:5.1f} FPS;{timing[5]:5.1f} tensor MPx/sec) for {tpu_count} TPUs using {seg_str}: {timing[2]}")
|
441 |
+
|
442 |
+
for tpu_count, out_fnames in v.items():
|
443 |
+
if len(out_fnames) > 1:
|
444 |
+
print(f"{tpu_count}: "+str(out_fnames)+",")
|
445 |
+
if 1 in v:
|
446 |
+
print(f" '_tflite': '{v[1][0]}'")
|
447 |
+
print(" },")
|