--- library_name: transformers tags: - llama - trl datasets: - elyza/ELYZA-tasks-100 language: - ja --- # Model Card for Model ID ## Model Details ### Model Description - **Developed by:** maktag - **Language(s) (NLP):** Japanese - **Finetuned from model [optional]:** llm-jp/llm-jp-3-13b ## How to Get Started with the Model ``` from transformers import AutoTokenizer, AutoModelForCausalLM # Load the fine-tuned model and tokenizer model_id = "your-username/llm-jp-3-13b-finetune1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Prepare your input prompt = """### 指示 以下の文章を英語に翻訳してください: 猫はかわいいです ### 回答 """ # Tokenize and generate inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( inputs["input_ids"], max_new_tokens=100, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id ) # Decode and print the response response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` [More Information Needed] ## Training Details - Fine-Tuning Framework: LoRA-based PEFT (Parameter-Efficient Fine-Tuning). - Dataset: Proprietary Japanese instruction-following dataset. - Sequence Length: 512 tokens. - Hyperparameters: - Batch size: 16 - Learning rate: 2e-5 - Epochs: 3 ### Training Data - [elyza/ELYZA-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100) - [Ichikara Instruction](https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/)