maktag commited on
Commit
ae2460e
·
verified ·
1 Parent(s): ebed11f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -22
README.md CHANGED
@@ -7,6 +7,8 @@ datasets:
7
  - elyza/ELYZA-tasks-100
8
  language:
9
  - ja
 
 
10
  ---
11
 
12
  # Model Card for Model ID
@@ -18,8 +20,8 @@ language:
18
 
19
  ### Model Description
20
 
21
- elyza-tasks-100-TV_0.jsonlの回答のためのコードです。
22
-
23
 
24
  - **Developed by:** maktag
25
  - **Language(s) (NLP):** Japanese
@@ -28,35 +30,35 @@ elyza-tasks-100-TV_0.jsonlの回答のためのコードです。
28
 
29
  ## How to Get Started with the Model
30
 
31
-
32
  ```
33
  from transformers import AutoTokenizer, AutoModelForCausalLM
34
 
35
  # Load the fine-tuned model and tokenizer
36
- model_id = "maktag/llm-jp-3-13b-finetune8"
 
37
  tokenizer = AutoTokenizer.from_pretrained(model_id)
38
  model = AutoModelForCausalLM.from_pretrained(model_id)
39
 
40
- # Prepare your input
41
- prompt = """### 指示
42
- 以下の文章を英語に翻訳してください:
43
- 猫はかわいいです
44
- ### 回答
45
- """
46
-
47
- # Tokenize and generate
48
- inputs = tokenizer(prompt, return_tensors="pt")
49
- outputs = model.generate(
50
- inputs["input_ids"],
51
- max_new_tokens=100,
52
- do_sample=False,
53
- repetition_penalty=1.2,
54
- pad_token_id=tokenizer.eos_token_id
55
  )
56
 
57
- # Decode and print the response
58
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
59
- print(response)
 
 
 
 
 
 
 
 
 
 
60
  ```
61
 
62
  [More Information Needed]
 
7
  - elyza/ELYZA-tasks-100
8
  language:
9
  - ja
10
+ base_model:
11
+ - llm-jp/llm-jp-3-13b
12
  ---
13
 
14
  # Model Card for Model ID
 
20
 
21
  ### Model Description
22
 
23
+ 東大松尾研LLM講座2024の最終課題向けのelyza-tasks-100-TV_0.jsonlの出力用にFinetuningしたモデルです。
24
+ モデルの利用については、提供いただいたOmmniCampusの環境およびサンプルコードに沿ったものとなっております。
25
 
26
  - **Developed by:** maktag
27
  - **Language(s) (NLP):** Japanese
 
30
 
31
  ## How to Get Started with the Model
32
 
 
33
  ```
34
  from transformers import AutoTokenizer, AutoModelForCausalLM
35
 
36
  # Load the fine-tuned model and tokenizer
37
+ base_model_id = "llm-jp/llm-jp-3-13b"
38
+ adapter_id = "maktag/llm-jp-3-13b-finetune8"
39
  tokenizer = AutoTokenizer.from_pretrained(model_id)
40
  model = AutoModelForCausalLM.from_pretrained(model_id)
41
 
42
+ # QLoRA config
43
+ bnb_config = BitsAndBytesConfig(
44
+ load_in_4bit=True,
45
+ bnb_4bit_quant_type="nf4",
46
+ bnb_4bit_compute_dtype=torch.bfloat16,
 
 
 
 
 
 
 
 
 
 
47
  )
48
 
49
+ # Load model
50
+ model = AutoModelForCausalLM.from_pretrained(
51
+ model_id,
52
+ quantization_config=bnb_config,
53
+ device_map="auto",
54
+ token = HF_TOKEN
55
+ )
56
+
57
+ # Load tokenizer
58
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
59
+
60
+ # 元のモデルにLoRAのアダプタを統合。
61
+ model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
62
  ```
63
 
64
  [More Information Needed]