Update README.md
Browse files
README.md
CHANGED
@@ -7,6 +7,8 @@ datasets:
|
|
7 |
- elyza/ELYZA-tasks-100
|
8 |
language:
|
9 |
- ja
|
|
|
|
|
10 |
---
|
11 |
|
12 |
# Model Card for Model ID
|
@@ -18,8 +20,8 @@ language:
|
|
18 |
|
19 |
### Model Description
|
20 |
|
21 |
-
elyza-tasks-100-TV_0.jsonl
|
22 |
-
|
23 |
|
24 |
- **Developed by:** maktag
|
25 |
- **Language(s) (NLP):** Japanese
|
@@ -28,35 +30,35 @@ elyza-tasks-100-TV_0.jsonlの回答のためのコードです。
|
|
28 |
|
29 |
## How to Get Started with the Model
|
30 |
|
31 |
-
|
32 |
```
|
33 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
34 |
|
35 |
# Load the fine-tuned model and tokenizer
|
36 |
-
|
|
|
37 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
38 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
-
|
47 |
-
# Tokenize and generate
|
48 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
49 |
-
outputs = model.generate(
|
50 |
-
inputs["input_ids"],
|
51 |
-
max_new_tokens=100,
|
52 |
-
do_sample=False,
|
53 |
-
repetition_penalty=1.2,
|
54 |
-
pad_token_id=tokenizer.eos_token_id
|
55 |
)
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
```
|
61 |
|
62 |
[More Information Needed]
|
|
|
7 |
- elyza/ELYZA-tasks-100
|
8 |
language:
|
9 |
- ja
|
10 |
+
base_model:
|
11 |
+
- llm-jp/llm-jp-3-13b
|
12 |
---
|
13 |
|
14 |
# Model Card for Model ID
|
|
|
20 |
|
21 |
### Model Description
|
22 |
|
23 |
+
東大松尾研LLM講座2024の最終課題向けのelyza-tasks-100-TV_0.jsonlの出力用にFinetuningしたモデルです。
|
24 |
+
モデルの利用については、提供いただいたOmmniCampusの環境およびサンプルコードに沿ったものとなっております。
|
25 |
|
26 |
- **Developed by:** maktag
|
27 |
- **Language(s) (NLP):** Japanese
|
|
|
30 |
|
31 |
## How to Get Started with the Model
|
32 |
|
|
|
33 |
```
|
34 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
35 |
|
36 |
# Load the fine-tuned model and tokenizer
|
37 |
+
base_model_id = "llm-jp/llm-jp-3-13b"
|
38 |
+
adapter_id = "maktag/llm-jp-3-13b-finetune8"
|
39 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
40 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
41 |
|
42 |
+
# QLoRA config
|
43 |
+
bnb_config = BitsAndBytesConfig(
|
44 |
+
load_in_4bit=True,
|
45 |
+
bnb_4bit_quant_type="nf4",
|
46 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
|
49 |
+
# Load model
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
model_id,
|
52 |
+
quantization_config=bnb_config,
|
53 |
+
device_map="auto",
|
54 |
+
token = HF_TOKEN
|
55 |
+
)
|
56 |
+
|
57 |
+
# Load tokenizer
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
|
59 |
+
|
60 |
+
# 元のモデルにLoRAのアダプタを統合。
|
61 |
+
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
|
62 |
```
|
63 |
|
64 |
[More Information Needed]
|