--- library_name: transformers tags: - llama - trl datasets: - elyza/ELYZA-tasks-100 language: - ja base_model: - llm-jp/llm-jp-3-13b --- # Model Card for Model ID ## Model Details ### Model Description 東大松尾研LLM講座2024の最終課題向けのelyza-tasks-100-TV_0.jsonlの出力用にFinetuningしたモデルです。 モデルの利用については、提供いただいたOmmniCampusの環境およびサンプルコードに沿ったものとなっております。 - **Developed by:** maktag - **Language(s) (NLP):** Japanese - **Finetuned from model [optional]:** llm-jp/llm-jp-3-13b ## How to Get Started with the Model ``` from transformers import AutoTokenizer, AutoModelForCausalLM # Load the fine-tuned model and tokenizer base_model_id = "llm-jp/llm-jp-3-13b" adapter_id = "maktag/llm-jp-3-13b-finetune8" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) # Load model model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto", token = HF_TOKEN ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN) # 元のモデルにLoRAのアダプタを統合。 model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) ``` [More Information Needed] ## Training Details - Fine-Tuning Framework: LoRA-based PEFT (Parameter-Efficient Fine-Tuning). - Dataset: Proprietary Japanese instruction-following dataset. - Sequence Length: 512 tokens. - Hyperparameters: - Batch size: 32 - Learning rate: 1e-5 - Epochs: 3 ### Training Data - [elyza/ELYZA-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100) - [Ichikara Instruction](https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/)