File size: 2,774 Bytes
7679d2f 296e89b 50776a3 7679d2f ad97867 1d03adb 7679d2f 74b496b 7679d2f a235a41 269b040 a235a41 269b040 a235a41 5884758 a235a41 5884758 a235a41 7679d2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
datasets:
- yahma/alpaca-cleaned
---
# Platypus2-70B-instruct-4bit-gptq
Platypus2-70B-instruct-4bit-gptq is a qunatnized version of [`garage-bAInd/Platypus2-70B-instruct`](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct) using GPTQ Quantnization.
This model is only 35 GB in size in comparision with the original garage-bAInd/Platypus2-70B-instruct 127 GB and can run on a single A6000 GPU
### Model Details
* **Quantnized by**: [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/)
* **Model type:** quantnized version of Platypus2-70B-instruct using 4bit quantnization
* **Language(s)**: English
### Prompt Template
```
### Instruction:
<prompt> (without the <>)
### Response:
```
### Training Dataset
`Platypus2-70B-instruct-4bit-gptq` quantnized using gptq on Alpaca dataset [`yahma/alpaca-cleaned`](https://huggingface.co/datasets/yahma/alpaca-cleaned).
### Training Procedure
`garage-bAInd/Platypus2-70B` was fine-tuned using gptq on 2 L40 48GB.
## How to Get Started with the Model
First install auto_gptq with
```shell
pip install auto_gptq
```
Use the code sample provided in the original post to interact with the model.
```python
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_id = "malhajar/Platypus2-70B-instruct-4bit-gptq"
model = AutoGPTQForCausalLM.from_quantized(model_id,inject_fused_attention=False,
use_safetensors=True,
trust_remote_code=False,
use_triton=False,
quantize_config=None)
tokenizer = AutoTokenizer.from_pretrained(model_id)
question: "Who was the first person to walk on the moon?"
# For generating a response
prompt = '''
### Instruction:
{question}
### Response:'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(input_ids)
response = tokenizer.decode(output[0])
print(response)
```
### Citations
```bibtex
@article{platypus2023,
title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs},
author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
booktitle={arXiv preprint arxiv:2308.07317},
year={2023}
}
```
```bibtex
@misc{touvron2023llama,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov year={2023},
eprint={2307.09288},
archivePrefix={arXiv},
}
```
```bibtex
@misc{frantar2023gptq,
title={GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers},
author={Elias Frantar and Saleh Ashkboos and Torsten Hoefler and Dan Alistarh},
year={2023},
eprint={2210.17323},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|