File size: 7,819 Bytes
47162d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@Author : Peike Li
@Contact : peike.li@yahoo.com
@File : evaluate.py
@Time : 8/4/19 3:36 PM
@Desc :
@License : This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import argparse
import numpy as np
import torch
from torch.utils import data
from tqdm import tqdm
from PIL import Image as PILImage
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
import networks
from datasets.datasets import LIPDataValSet
from utils.miou import compute_mean_ioU
from utils.transforms import BGR2RGB_transform
from utils.transforms import transform_parsing
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Self Correction for Human Parsing")
# Network Structure
parser.add_argument("--arch", type=str, default='resnet101')
# Data Preference
parser.add_argument("--data-dir", type=str, default='./data/LIP')
parser.add_argument("--batch-size", type=int, default=1)
parser.add_argument("--input-size", type=str, default='473,473')
parser.add_argument("--num-classes", type=int, default=20)
parser.add_argument("--ignore-label", type=int, default=255)
parser.add_argument("--random-mirror", action="store_true")
parser.add_argument("--random-scale", action="store_true")
# Evaluation Preference
parser.add_argument("--log-dir", type=str, default='./log')
parser.add_argument("--model-restore", type=str, default='./log/checkpoint.pth.tar')
parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.")
parser.add_argument("--save-results", action="store_true", help="whether to save the results.")
parser.add_argument("--flip", action="store_true", help="random flip during the test.")
parser.add_argument("--multi-scales", type=str, default='1', help="multiple scales during the test")
return parser.parse_args()
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def multi_scale_testing(model, batch_input_im, crop_size=[473, 473], flip=True, multi_scales=[1]):
flipped_idx = (15, 14, 17, 16, 19, 18)
if len(batch_input_im.shape) > 4:
batch_input_im = batch_input_im.squeeze()
if len(batch_input_im.shape) == 3:
batch_input_im = batch_input_im.unsqueeze(0)
interp = torch.nn.Upsample(size=crop_size, mode='bilinear', align_corners=True)
ms_outputs = []
for s in multi_scales:
interp_im = torch.nn.Upsample(scale_factor=s, mode='bilinear', align_corners=True)
scaled_im = interp_im(batch_input_im)
parsing_output = model(scaled_im)
parsing_output = parsing_output[0][-1]
output = parsing_output[0]
if flip:
flipped_output = parsing_output[1]
flipped_output[14:20, :, :] = flipped_output[flipped_idx, :, :]
output += flipped_output.flip(dims=[-1])
output *= 0.5
output = interp(output.unsqueeze(0))
ms_outputs.append(output[0])
ms_fused_parsing_output = torch.stack(ms_outputs)
ms_fused_parsing_output = ms_fused_parsing_output.mean(0)
ms_fused_parsing_output = ms_fused_parsing_output.permute(1, 2, 0) # HWC
parsing = torch.argmax(ms_fused_parsing_output, dim=2)
parsing = parsing.data.cpu().numpy()
ms_fused_parsing_output = ms_fused_parsing_output.data.cpu().numpy()
return parsing, ms_fused_parsing_output
def main():
"""Create the model and start the evaluation process."""
args = get_arguments()
multi_scales = [float(i) for i in args.multi_scales.split(',')]
gpus = [int(i) for i in args.gpu.split(',')]
assert len(gpus) == 1
if not args.gpu == 'None':
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
cudnn.benchmark = True
cudnn.enabled = True
h, w = map(int, args.input_size.split(','))
input_size = [h, w]
model = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=None)
IMAGE_MEAN = model.mean
IMAGE_STD = model.std
INPUT_SPACE = model.input_space
print('image mean: {}'.format(IMAGE_MEAN))
print('image std: {}'.format(IMAGE_STD))
print('input space:{}'.format(INPUT_SPACE))
if INPUT_SPACE == 'BGR':
print('BGR Transformation')
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=IMAGE_MEAN,
std=IMAGE_STD),
])
if INPUT_SPACE == 'RGB':
print('RGB Transformation')
transform = transforms.Compose([
transforms.ToTensor(),
BGR2RGB_transform(),
transforms.Normalize(mean=IMAGE_MEAN,
std=IMAGE_STD),
])
# Data loader
lip_test_dataset = LIPDataValSet(args.data_dir, 'val', crop_size=input_size, transform=transform, flip=args.flip)
num_samples = len(lip_test_dataset)
print('Totoal testing sample numbers: {}'.format(num_samples))
testloader = data.DataLoader(lip_test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True)
# Load model weight
state_dict = torch.load(args.model_restore)['state_dict']
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
model.cuda()
model.eval()
sp_results_dir = os.path.join(args.log_dir, 'sp_results')
if not os.path.exists(sp_results_dir):
os.makedirs(sp_results_dir)
palette = get_palette(20)
parsing_preds = []
scales = np.zeros((num_samples, 2), dtype=np.float32)
centers = np.zeros((num_samples, 2), dtype=np.int32)
with torch.no_grad():
for idx, batch in enumerate(tqdm(testloader)):
image, meta = batch
if (len(image.shape) > 4):
image = image.squeeze()
im_name = meta['name'][0]
c = meta['center'].numpy()[0]
s = meta['scale'].numpy()[0]
w = meta['width'].numpy()[0]
h = meta['height'].numpy()[0]
scales[idx, :] = s
centers[idx, :] = c
parsing, logits = multi_scale_testing(model, image.cuda(), crop_size=input_size, flip=args.flip,
multi_scales=multi_scales)
if args.save_results:
parsing_result = transform_parsing(parsing, c, s, w, h, input_size)
parsing_result_path = os.path.join(sp_results_dir, im_name + '.png')
output_im = PILImage.fromarray(np.asarray(parsing_result, dtype=np.uint8))
output_im.putpalette(palette)
output_im.save(parsing_result_path)
parsing_preds.append(parsing)
assert len(parsing_preds) == num_samples
mIoU = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size)
print(mIoU)
return
if __name__ == '__main__':
main()
|