mamiksik commited on
Commit
5637eb3
·
1 Parent(s): e2178d0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ model-index:
7
+ - name: CodeBERTa-commit-message-autocomplete
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # CodeBERTa-commit-message-autocomplete
15
+
16
+ This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.7327
19
+ - Accuracy: 0.6612
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 2e-05
39
+ - train_batch_size: 42
40
+ - eval_batch_size: 42
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 3
43
+ - total_train_batch_size: 126
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 1000
47
+ - num_epochs: 50
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
+ | No log | 1.0 | 325 | 2.6847 | 0.5185 |
55
+ | 3.367 | 2.0 | 650 | 2.4055 | 0.5573 |
56
+ | 3.367 | 3.0 | 975 | 2.2742 | 0.5766 |
57
+ | 2.4354 | 4.0 | 1300 | 2.1065 | 0.6057 |
58
+ | 2.1925 | 5.0 | 1625 | 2.0764 | 0.6053 |
59
+ | 2.1925 | 6.0 | 1950 | 2.0169 | 0.6172 |
60
+ | 2.0217 | 7.0 | 2275 | 1.9270 | 0.6209 |
61
+ | 1.9424 | 8.0 | 2600 | 1.9326 | 0.6318 |
62
+ | 1.9424 | 9.0 | 2925 | 1.8849 | 0.6321 |
63
+ | 1.8485 | 10.0 | 3250 | 1.8834 | 0.6422 |
64
+ | 1.7847 | 11.0 | 3575 | 1.8213 | 0.6481 |
65
+ | 1.7847 | 12.0 | 3900 | 1.8674 | 0.6374 |
66
+ | 1.719 | 13.0 | 4225 | 1.7865 | 0.6473 |
67
+ | 1.6847 | 14.0 | 4550 | 1.8005 | 0.6523 |
68
+ | 1.6847 | 15.0 | 4875 | 1.8039 | 0.6516 |
69
+ | 1.6274 | 16.0 | 5200 | 1.7457 | 0.6617 |
70
+ | 1.5833 | 17.0 | 5525 | 1.7456 | 0.6526 |
71
+ | 1.5833 | 18.0 | 5850 | 1.7314 | 0.6626 |
72
+ | 1.5485 | 19.0 | 6175 | 1.7605 | 0.6590 |
73
+ | 1.5448 | 20.0 | 6500 | 1.7694 | 0.6592 |
74
+ | 1.5448 | 21.0 | 6825 | 1.7327 | 0.6612 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.25.1
80
+ - Pytorch 1.13.0+cu117
81
+ - Datasets 2.7.1
82
+ - Tokenizers 0.13.2