--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: CodeBERTa-commit-message-autocomplete results: [] --- # CodeBERTa-commit-message-autocomplete This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8796 - Accuracy: 0.6381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 4.5229 | 0.3460 | | No log | 2.0 | 80 | 3.8419 | 0.3792 | | No log | 3.0 | 120 | 3.1830 | 0.4538 | | No log | 4.0 | 160 | 2.8435 | 0.5 | | No log | 5.0 | 200 | 2.6741 | 0.5126 | | No log | 6.0 | 240 | 2.6468 | 0.5211 | | No log | 7.0 | 280 | 2.4902 | 0.5431 | | No log | 8.0 | 320 | 2.4223 | 0.5590 | | No log | 9.0 | 360 | 2.3677 | 0.5625 | | No log | 10.0 | 400 | 2.3634 | 0.5654 | | No log | 11.0 | 440 | 2.3334 | 0.5693 | | No log | 12.0 | 480 | 2.1738 | 0.5963 | | 3.0595 | 13.0 | 520 | 2.2148 | 0.5882 | | 3.0595 | 14.0 | 560 | 2.2387 | 0.5878 | | 3.0595 | 15.0 | 600 | 2.1472 | 0.5938 | | 3.0595 | 16.0 | 640 | 2.1703 | 0.5963 | | 3.0595 | 17.0 | 680 | 2.1183 | 0.5937 | | 3.0595 | 18.0 | 720 | 2.1139 | 0.6035 | | 3.0595 | 19.0 | 760 | 2.0543 | 0.6106 | | 3.0595 | 20.0 | 800 | 2.0135 | 0.6148 | | 3.0595 | 21.0 | 840 | 2.0445 | 0.6119 | | 3.0595 | 22.0 | 880 | 1.9723 | 0.6221 | | 3.0595 | 23.0 | 920 | 1.9972 | 0.6205 | | 3.0595 | 24.0 | 960 | 1.9588 | 0.6280 | | 2.1206 | 25.0 | 1000 | 1.9563 | 0.6280 | | 2.1206 | 26.0 | 1040 | 1.9421 | 0.6254 | | 2.1206 | 27.0 | 1080 | 1.9820 | 0.6291 | | 2.1206 | 28.0 | 1120 | 1.8989 | 0.6315 | | 2.1206 | 29.0 | 1160 | 1.8743 | 0.6330 | | 2.1206 | 30.0 | 1200 | 1.8840 | 0.6389 | | 2.1206 | 31.0 | 1240 | 1.9038 | 0.6325 | | 2.1206 | 32.0 | 1280 | 1.8796 | 0.6381 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2