--- tags: - generated_from_trainer metrics: - accuracy base_model: microsoft/codebert-base-mlm model-index: - name: CodeBERTa-commit-message-autocomplete results: [] --- # CodeBERTa-commit-message-autocomplete This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8906 - Accuracy: 0.6346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 4.5523 | 0.3432 | | No log | 2.0 | 80 | 3.8711 | 0.3796 | | No log | 3.0 | 120 | 3.2419 | 0.4503 | | No log | 4.0 | 160 | 2.8709 | 0.4962 | | No log | 5.0 | 200 | 2.6999 | 0.5085 | | No log | 6.0 | 240 | 2.6622 | 0.5216 | | No log | 7.0 | 280 | 2.5048 | 0.5410 | | No log | 8.0 | 320 | 2.4249 | 0.5581 | | No log | 9.0 | 360 | 2.3727 | 0.5623 | | No log | 10.0 | 400 | 2.3625 | 0.5665 | | No log | 11.0 | 440 | 2.3320 | 0.5706 | | No log | 12.0 | 480 | 2.1704 | 0.5950 | | 3.081 | 13.0 | 520 | 2.2109 | 0.5893 | | 3.081 | 14.0 | 560 | 2.2330 | 0.5884 | | 3.081 | 15.0 | 600 | 2.1454 | 0.5954 | | 3.081 | 16.0 | 640 | 2.1740 | 0.5951 | | 3.081 | 17.0 | 680 | 2.1219 | 0.5920 | | 3.081 | 18.0 | 720 | 2.1136 | 0.6052 | | 3.081 | 19.0 | 760 | 2.0586 | 0.6127 | | 3.081 | 20.0 | 800 | 2.0185 | 0.6113 | | 3.081 | 21.0 | 840 | 2.0493 | 0.6129 | | 3.081 | 22.0 | 880 | 1.9766 | 0.6217 | | 3.081 | 23.0 | 920 | 1.9968 | 0.6189 | | 3.081 | 24.0 | 960 | 1.9567 | 0.6276 | | 2.122 | 25.0 | 1000 | 1.9611 | 0.6269 | | 2.122 | 26.0 | 1040 | 1.9437 | 0.6254 | | 2.122 | 27.0 | 1080 | 1.9865 | 0.6266 | | 2.122 | 28.0 | 1120 | 1.9112 | 0.6295 | | 2.122 | 29.0 | 1160 | 1.8903 | 0.6292 | | 2.122 | 30.0 | 1200 | 1.8992 | 0.6376 | | 2.122 | 31.0 | 1240 | 1.9122 | 0.6327 | | 2.122 | 32.0 | 1280 | 1.8906 | 0.6346 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2