--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: CodeBERTa-commit-message-autocomplete results: [] --- # CodeBERTa-commit-message-autocomplete This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7327 - Accuracy: 0.6612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 42 - eval_batch_size: 42 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 126 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 325 | 2.6847 | 0.5185 | | 3.367 | 2.0 | 650 | 2.4055 | 0.5573 | | 3.367 | 3.0 | 975 | 2.2742 | 0.5766 | | 2.4354 | 4.0 | 1300 | 2.1065 | 0.6057 | | 2.1925 | 5.0 | 1625 | 2.0764 | 0.6053 | | 2.1925 | 6.0 | 1950 | 2.0169 | 0.6172 | | 2.0217 | 7.0 | 2275 | 1.9270 | 0.6209 | | 1.9424 | 8.0 | 2600 | 1.9326 | 0.6318 | | 1.9424 | 9.0 | 2925 | 1.8849 | 0.6321 | | 1.8485 | 10.0 | 3250 | 1.8834 | 0.6422 | | 1.7847 | 11.0 | 3575 | 1.8213 | 0.6481 | | 1.7847 | 12.0 | 3900 | 1.8674 | 0.6374 | | 1.719 | 13.0 | 4225 | 1.7865 | 0.6473 | | 1.6847 | 14.0 | 4550 | 1.8005 | 0.6523 | | 1.6847 | 15.0 | 4875 | 1.8039 | 0.6516 | | 1.6274 | 16.0 | 5200 | 1.7457 | 0.6617 | | 1.5833 | 17.0 | 5525 | 1.7456 | 0.6526 | | 1.5833 | 18.0 | 5850 | 1.7314 | 0.6626 | | 1.5485 | 19.0 | 6175 | 1.7605 | 0.6590 | | 1.5448 | 20.0 | 6500 | 1.7694 | 0.6592 | | 1.5448 | 21.0 | 6825 | 1.7327 | 0.6612 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2