update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: CodeBertaCLM
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# CodeBertaCLM
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.0401
|
20 |
+
- Accuracy: 0.0151
|
21 |
+
- F1: 0.0151
|
22 |
+
- Bleu4: 0.0545
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 2e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 16
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 5
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bleu4 |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|
|
53 |
+
| 2.7267 | 1.0 | 1373 | 1.5727 | 0.0161 | 0.0161 | 0.0423 |
|
54 |
+
| 1.4983 | 2.0 | 2746 | 1.2421 | 0.0170 | 0.0170 | 0.0674 |
|
55 |
+
| 1.2858 | 3.0 | 4119 | 1.1225 | 0.0154 | 0.0154 | 0.0434 |
|
56 |
+
| 1.2268 | 4.0 | 5492 | 1.0612 | 0.0153 | 0.0153 | 0.0646 |
|
57 |
+
| 1.1658 | 5.0 | 6865 | 1.0401 | 0.0151 | 0.0151 | 0.0545 |
|
58 |
+
|
59 |
+
|
60 |
+
### Framework versions
|
61 |
+
|
62 |
+
- Transformers 4.25.1
|
63 |
+
- Pytorch 1.13.0+cu117
|
64 |
+
- Datasets 2.7.1
|
65 |
+
- Tokenizers 0.13.2
|