File size: 1,730 Bytes
ec36b04
 
 
8d828b6
 
91daf39
ec36b04
 
 
 
 
 
 
 
 
 
 
8d828b6
8554d5d
 
 
 
ec36b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6587462
 
 
ec36b04
 
 
8d828b6
 
 
 
91daf39
 
8554d5d
 
 
 
 
8d828b6
ec36b04
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: CommitPredictor
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CommitPredictor

This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5977
- Accuracy: 0.8793
- F1: 0.8793
- Bleu4: 0.8016

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Bleu4  |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|
| 0.8373        | 1.0   | 1373 | 0.6817          | 0.8587   | 0.8587 | 0.8615 |
| 0.6984        | 2.0   | 2746 | 0.6406          | 0.8685   | 0.8685 | 0.9062 |
| 0.6587        | 3.0   | 4119 | 0.6172          | 0.8748   | 0.8748 | 0.9067 |
| 0.6514        | 4.0   | 5492 | 0.6017          | 0.8783   | 0.8783 | 0.9198 |
| 0.6263        | 5.0   | 6865 | 0.5977          | 0.8793   | 0.8793 | 0.8016 |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2