update model card README.md
Browse files
README.md
CHANGED
@@ -15,8 +15,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 1.
|
19 |
-
- Accuracy: 0.
|
20 |
|
21 |
## Model description
|
22 |
|
@@ -36,11 +36,11 @@ More information needed
|
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
- learning_rate: 2e-05
|
39 |
-
- train_batch_size:
|
40 |
-
- eval_batch_size:
|
41 |
- seed: 42
|
42 |
- gradient_accumulation_steps: 3
|
43 |
-
- total_train_batch_size:
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
- num_epochs: 50
|
@@ -50,56 +50,56 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
-
|
|
54 |
-
| 2.
|
55 |
-
| 2.
|
56 |
-
| 2.
|
57 |
-
|
|
58 |
-
|
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 1.
|
63 |
-
| 1.
|
64 |
-
| 1.
|
65 |
-
| 1.
|
66 |
-
| 1.
|
67 |
-
| 1.
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
| 1.
|
77 |
-
| 1.
|
78 |
-
| 1.
|
79 |
-
| 1.
|
80 |
-
| 1.
|
81 |
-
| 1.
|
82 |
-
| 1.
|
83 |
-
| 1.
|
84 |
-
| 1.
|
85 |
-
| 1.
|
86 |
-
| 1.
|
87 |
-
| 1.
|
88 |
-
| 1.
|
89 |
-
| 1.
|
90 |
-
| 1.
|
91 |
-
| 1.
|
92 |
-
| 1.
|
93 |
-
| 1.
|
94 |
-
| 1.
|
95 |
-
| 1.
|
96 |
-
| 1.
|
97 |
-
| 1.
|
98 |
-
| 1.
|
99 |
-
| 1.
|
100 |
-
| 1.
|
101 |
-
| 1.
|
102 |
-
| 1.
|
103 |
|
104 |
|
105 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.6621
|
19 |
+
- Accuracy: 0.6851
|
20 |
|
21 |
## Model description
|
22 |
|
|
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 42
|
40 |
+
- eval_batch_size: 42
|
41 |
- seed: 42
|
42 |
- gradient_accumulation_steps: 3
|
43 |
+
- total_train_batch_size: 126
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
- num_epochs: 50
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 299 | 2.2298 | 0.5874 |
|
54 |
+
| 2.5371 | 2.0 | 598 | 2.1358 | 0.6110 |
|
55 |
+
| 2.5371 | 3.0 | 897 | 2.0865 | 0.6056 |
|
56 |
+
| 2.1935 | 4.0 | 1196 | 2.0596 | 0.6179 |
|
57 |
+
| 2.1935 | 5.0 | 1495 | 1.9902 | 0.6305 |
|
58 |
+
| 2.0549 | 6.0 | 1794 | 1.9647 | 0.6274 |
|
59 |
+
| 1.9558 | 7.0 | 2093 | 1.9462 | 0.6290 |
|
60 |
+
| 1.9558 | 8.0 | 2392 | 1.9443 | 0.6261 |
|
61 |
+
| 1.8732 | 9.0 | 2691 | 1.9241 | 0.6317 |
|
62 |
+
| 1.8732 | 10.0 | 2990 | 1.8810 | 0.6461 |
|
63 |
+
| 1.798 | 11.0 | 3289 | 1.8232 | 0.6434 |
|
64 |
+
| 1.7427 | 12.0 | 3588 | 1.8621 | 0.6452 |
|
65 |
+
| 1.7427 | 13.0 | 3887 | 1.7853 | 0.6596 |
|
66 |
+
| 1.7124 | 14.0 | 4186 | 1.8741 | 0.6451 |
|
67 |
+
| 1.7124 | 15.0 | 4485 | 1.7989 | 0.6536 |
|
68 |
+
| 1.6683 | 16.0 | 4784 | 1.7783 | 0.6582 |
|
69 |
+
| 1.59 | 17.0 | 5083 | 1.7738 | 0.6642 |
|
70 |
+
| 1.59 | 18.0 | 5382 | 1.8241 | 0.6534 |
|
71 |
+
| 1.5773 | 19.0 | 5681 | 1.8739 | 0.6547 |
|
72 |
+
| 1.5773 | 20.0 | 5980 | 1.7439 | 0.6695 |
|
73 |
+
| 1.532 | 21.0 | 6279 | 1.7081 | 0.6705 |
|
74 |
+
| 1.4875 | 22.0 | 6578 | 1.7486 | 0.6662 |
|
75 |
+
| 1.4875 | 23.0 | 6877 | 1.7568 | 0.6656 |
|
76 |
+
| 1.466 | 24.0 | 7176 | 1.8062 | 0.6658 |
|
77 |
+
| 1.466 | 25.0 | 7475 | 1.7666 | 0.6704 |
|
78 |
+
| 1.448 | 26.0 | 7774 | 1.7219 | 0.6670 |
|
79 |
+
| 1.4121 | 27.0 | 8073 | 1.6704 | 0.6745 |
|
80 |
+
| 1.4121 | 28.0 | 8372 | 1.6966 | 0.6719 |
|
81 |
+
| 1.3984 | 29.0 | 8671 | 1.6789 | 0.6825 |
|
82 |
+
| 1.3984 | 30.0 | 8970 | 1.7001 | 0.6797 |
|
83 |
+
| 1.3586 | 31.0 | 9269 | 1.7262 | 0.6712 |
|
84 |
+
| 1.3433 | 32.0 | 9568 | 1.7446 | 0.6744 |
|
85 |
+
| 1.3433 | 33.0 | 9867 | 1.6961 | 0.6752 |
|
86 |
+
| 1.3366 | 34.0 | 10166 | 1.7180 | 0.6729 |
|
87 |
+
| 1.3366 | 35.0 | 10465 | 1.6608 | 0.6773 |
|
88 |
+
| 1.3227 | 36.0 | 10764 | 1.6820 | 0.6814 |
|
89 |
+
| 1.3025 | 37.0 | 11063 | 1.7324 | 0.6727 |
|
90 |
+
| 1.3025 | 38.0 | 11362 | 1.6705 | 0.6882 |
|
91 |
+
| 1.2933 | 39.0 | 11661 | 1.6891 | 0.6742 |
|
92 |
+
| 1.2933 | 40.0 | 11960 | 1.6533 | 0.6797 |
|
93 |
+
| 1.2826 | 41.0 | 12259 | 1.6851 | 0.6770 |
|
94 |
+
| 1.2784 | 42.0 | 12558 | 1.7140 | 0.6806 |
|
95 |
+
| 1.2784 | 43.0 | 12857 | 1.6869 | 0.6769 |
|
96 |
+
| 1.2703 | 44.0 | 13156 | 1.7068 | 0.6730 |
|
97 |
+
| 1.2703 | 45.0 | 13455 | 1.7376 | 0.6681 |
|
98 |
+
| 1.2492 | 46.0 | 13754 | 1.6944 | 0.6751 |
|
99 |
+
| 1.2619 | 47.0 | 14053 | 1.8112 | 0.6644 |
|
100 |
+
| 1.2619 | 48.0 | 14352 | 1.7553 | 0.6721 |
|
101 |
+
| 1.2465 | 49.0 | 14651 | 1.7040 | 0.6713 |
|
102 |
+
| 1.2465 | 50.0 | 14950 | 1.6621 | 0.6851 |
|
103 |
|
104 |
|
105 |
### Framework versions
|