update model card README.md
Browse files
README.md
CHANGED
@@ -16,10 +16,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Accuracy: 0.
|
21 |
-
- F1: 0.
|
22 |
-
- Bleu4: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -39,43 +39,30 @@ More information needed
|
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
- learning_rate: 2e-05
|
42 |
-
- train_batch_size:
|
43 |
-
- eval_batch_size:
|
44 |
- seed: 42
|
|
|
|
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- num_epochs: 50
|
|
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
-
| Training Loss | Epoch | Step
|
52 |
-
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.5345 | 11.0 | 7557 | 0.5319 | 0.8905 | 0.8905 | 0.9363 |
|
64 |
-
| 0.5287 | 12.0 | 8244 | 0.5220 | 0.8911 | 0.8911 | 0.8816 |
|
65 |
-
| 0.5226 | 13.0 | 8931 | 0.5139 | 0.8938 | 0.8938 | 0.9438 |
|
66 |
-
| 0.5147 | 14.0 | 9618 | 0.5124 | 0.8929 | 0.8929 | 0.9145 |
|
67 |
-
| 0.511 | 15.0 | 10305 | 0.5131 | 0.8932 | 0.8932 | 0.8570 |
|
68 |
-
| 0.4996 | 16.0 | 10992 | 0.4997 | 0.8964 | 0.8964 | 0.9287 |
|
69 |
-
| 0.4949 | 17.0 | 11679 | 0.5033 | 0.8958 | 0.8958 | 0.9460 |
|
70 |
-
| 0.4882 | 18.0 | 12366 | 0.5003 | 0.8971 | 0.8971 | 0.7739 |
|
71 |
-
| 0.4837 | 19.0 | 13053 | 0.4914 | 0.8979 | 0.8979 | 0.9014 |
|
72 |
-
| 0.4822 | 20.0 | 13740 | 0.4962 | 0.8963 | 0.8963 | 0.9330 |
|
73 |
-
| 0.4778 | 21.0 | 14427 | 0.4844 | 0.8971 | 0.8971 | 0.8454 |
|
74 |
-
| 0.4704 | 22.0 | 15114 | 0.4809 | 0.8988 | 0.8988 | 0.9274 |
|
75 |
-
| 0.4676 | 23.0 | 15801 | 0.4735 | 0.9009 | 0.9009 | 0.9445 |
|
76 |
-
| 0.4663 | 24.0 | 16488 | 0.4792 | 0.8990 | 0.8990 | 0.9001 |
|
77 |
-
| 0.4605 | 25.0 | 17175 | 0.4826 | 0.8995 | 0.8995 | 0.8313 |
|
78 |
-
| 0.4621 | 26.0 | 17862 | 0.4811 | 0.8991 | 0.8991 | 0.9479 |
|
79 |
|
80 |
|
81 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5888
|
20 |
+
- Accuracy: 0.8783
|
21 |
+
- F1: 0.8783
|
22 |
+
- Bleu4: 0.8598
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
- learning_rate: 2e-05
|
42 |
+
- train_batch_size: 42
|
43 |
+
- eval_batch_size: 42
|
44 |
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 3
|
46 |
+
- total_train_batch_size: 126
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
- num_epochs: 50
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bleu4 |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|
|
56 |
+
| No log | 1.0 | 236 | 0.8706 | 0.8253 | 0.8253 | 0.7764 |
|
57 |
+
| No log | 2.0 | 472 | 0.7296 | 0.8503 | 0.8503 | 0.8287 |
|
58 |
+
| 1.0825 | 3.0 | 708 | 0.6826 | 0.8594 | 0.8594 | 0.8123 |
|
59 |
+
| 1.0825 | 4.0 | 944 | 0.6655 | 0.8645 | 0.8645 | 0.8480 |
|
60 |
+
| 0.755 | 5.0 | 1180 | 0.6317 | 0.8696 | 0.8696 | 0.9028 |
|
61 |
+
| 0.755 | 6.0 | 1416 | 0.6333 | 0.8699 | 0.8699 | 0.8870 |
|
62 |
+
| 0.6948 | 7.0 | 1652 | 0.6147 | 0.8738 | 0.8738 | 0.9187 |
|
63 |
+
| 0.6948 | 8.0 | 1888 | 0.6110 | 0.8738 | 0.8738 | 0.8080 |
|
64 |
+
| 0.6633 | 9.0 | 2124 | 0.5987 | 0.8770 | 0.8770 | 0.8903 |
|
65 |
+
| 0.6633 | 10.0 | 2360 | 0.5888 | 0.8783 | 0.8783 | 0.8598 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
### Framework versions
|