update model card README.md
Browse files
README.md
CHANGED
@@ -15,8 +15,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 1.
|
19 |
-
- Accuracy: 0.
|
20 |
|
21 |
## Model description
|
22 |
|
@@ -36,11 +36,11 @@ More information needed
|
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
- learning_rate: 2e-05
|
39 |
-
- train_batch_size:
|
40 |
-
- eval_batch_size:
|
41 |
- seed: 42
|
42 |
- gradient_accumulation_steps: 3
|
43 |
-
- total_train_batch_size:
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
- num_epochs: 50
|
@@ -50,56 +50,56 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
-
| No log | 1.0 |
|
54 |
-
| 2.
|
55 |
-
| 2.
|
56 |
-
| 2.
|
57 |
-
| 2.
|
58 |
-
| 2.
|
59 |
-
|
|
60 |
-
|
|
61 |
-
| 1.
|
62 |
-
| 1.
|
63 |
-
| 1.
|
64 |
-
| 1.
|
65 |
-
| 1.
|
66 |
-
| 1.
|
67 |
-
| 1.
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
| 1.
|
77 |
-
| 1.
|
78 |
-
| 1.
|
79 |
-
| 1.
|
80 |
-
| 1.
|
81 |
-
| 1.
|
82 |
-
| 1.
|
83 |
-
| 1.
|
84 |
-
| 1.
|
85 |
-
| 1.
|
86 |
-
| 1.
|
87 |
-
| 1.
|
88 |
-
| 1.
|
89 |
-
| 1.
|
90 |
-
| 1.
|
91 |
-
| 1.
|
92 |
-
| 1.
|
93 |
-
| 1.
|
94 |
-
| 1.
|
95 |
-
| 1.
|
96 |
-
| 1.
|
97 |
-
| 1.
|
98 |
-
| 1.
|
99 |
-
| 1.
|
100 |
-
| 1.
|
101 |
-
| 1.
|
102 |
-
| 1.
|
103 |
|
104 |
|
105 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.9935
|
19 |
+
- Accuracy: 0.6325
|
20 |
|
21 |
## Model description
|
22 |
|
|
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 21
|
40 |
+
- eval_batch_size: 21
|
41 |
- seed: 42
|
42 |
- gradient_accumulation_steps: 3
|
43 |
+
- total_train_batch_size: 63
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
- num_epochs: 50
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 448 | 2.4744 | 0.5376 |
|
54 |
+
| 2.9007 | 2.0 | 896 | 2.4149 | 0.5473 |
|
55 |
+
| 2.5284 | 3.0 | 1344 | 2.3077 | 0.5639 |
|
56 |
+
| 2.3292 | 4.0 | 1792 | 2.2617 | 0.5640 |
|
57 |
+
| 2.2692 | 5.0 | 2240 | 2.2155 | 0.5719 |
|
58 |
+
| 2.1766 | 6.0 | 2688 | 2.1555 | 0.5792 |
|
59 |
+
| 2.0842 | 7.0 | 3136 | 2.0758 | 0.6030 |
|
60 |
+
| 2.0268 | 8.0 | 3584 | 2.1446 | 0.5942 |
|
61 |
+
| 1.9416 | 9.0 | 4032 | 2.1110 | 0.5840 |
|
62 |
+
| 1.9416 | 10.0 | 4480 | 2.1379 | 0.5888 |
|
63 |
+
| 1.8969 | 11.0 | 4928 | 2.0461 | 0.6082 |
|
64 |
+
| 1.8247 | 12.0 | 5376 | 2.0585 | 0.6007 |
|
65 |
+
| 1.8038 | 13.0 | 5824 | 2.0541 | 0.6022 |
|
66 |
+
| 1.7601 | 14.0 | 6272 | 2.0832 | 0.6043 |
|
67 |
+
| 1.7086 | 15.0 | 6720 | 2.0224 | 0.6096 |
|
68 |
+
| 1.7087 | 16.0 | 7168 | 2.0853 | 0.6057 |
|
69 |
+
| 1.653 | 17.0 | 7616 | 2.0259 | 0.6124 |
|
70 |
+
| 1.5953 | 18.0 | 8064 | 1.9913 | 0.6207 |
|
71 |
+
| 1.6074 | 19.0 | 8512 | 1.9798 | 0.6157 |
|
72 |
+
| 1.6074 | 20.0 | 8960 | 2.0234 | 0.6033 |
|
73 |
+
| 1.5749 | 21.0 | 9408 | 1.9686 | 0.6197 |
|
74 |
+
| 1.535 | 22.0 | 9856 | 2.0068 | 0.6163 |
|
75 |
+
| 1.4942 | 23.0 | 10304 | 1.9486 | 0.6310 |
|
76 |
+
| 1.4765 | 24.0 | 10752 | 1.9502 | 0.6304 |
|
77 |
+
| 1.4558 | 25.0 | 11200 | 1.9509 | 0.6328 |
|
78 |
+
| 1.4617 | 26.0 | 11648 | 1.9903 | 0.6196 |
|
79 |
+
| 1.4224 | 27.0 | 12096 | 1.9849 | 0.6321 |
|
80 |
+
| 1.4019 | 28.0 | 12544 | 1.9781 | 0.6193 |
|
81 |
+
| 1.4019 | 29.0 | 12992 | 2.0661 | 0.6145 |
|
82 |
+
| 1.3624 | 30.0 | 13440 | 1.9948 | 0.6191 |
|
83 |
+
| 1.3517 | 31.0 | 13888 | 1.9117 | 0.6392 |
|
84 |
+
| 1.3613 | 32.0 | 14336 | 2.0300 | 0.6176 |
|
85 |
+
| 1.3428 | 33.0 | 14784 | 2.0005 | 0.6226 |
|
86 |
+
| 1.3257 | 34.0 | 15232 | 2.0079 | 0.6149 |
|
87 |
+
| 1.3127 | 35.0 | 15680 | 2.0231 | 0.6213 |
|
88 |
+
| 1.289 | 36.0 | 16128 | 1.9961 | 0.6296 |
|
89 |
+
| 1.2689 | 37.0 | 16576 | 1.9930 | 0.6221 |
|
90 |
+
| 1.2651 | 38.0 | 17024 | 1.9675 | 0.6314 |
|
91 |
+
| 1.2651 | 39.0 | 17472 | 1.9835 | 0.6220 |
|
92 |
+
| 1.2638 | 40.0 | 17920 | nan | 0.6275 |
|
93 |
+
| 1.235 | 41.0 | 18368 | 2.0100 | 0.6299 |
|
94 |
+
| 1.2239 | 42.0 | 18816 | 2.0384 | 0.6152 |
|
95 |
+
| 1.2147 | 43.0 | 19264 | 2.0421 | 0.6209 |
|
96 |
+
| 1.1961 | 44.0 | 19712 | 2.0041 | 0.6212 |
|
97 |
+
| 1.1988 | 45.0 | 20160 | 1.9905 | 0.6230 |
|
98 |
+
| 1.2007 | 46.0 | 20608 | 2.0222 | 0.6275 |
|
99 |
+
| 1.2029 | 47.0 | 21056 | 1.9856 | 0.6361 |
|
100 |
+
| 1.1779 | 48.0 | 21504 | 2.0348 | 0.6184 |
|
101 |
+
| 1.1779 | 49.0 | 21952 | 1.9196 | 0.6324 |
|
102 |
+
| 1.1973 | 50.0 | 22400 | 1.9935 | 0.6325 |
|
103 |
|
104 |
|
105 |
### Framework versions
|