update model card README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,9 @@
|
|
2 |
license: bsd-3-clause
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
|
|
5 |
model-index:
|
6 |
- name: CommitPredictorT5
|
7 |
results: []
|
@@ -13,6 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
# CommitPredictorT5
|
14 |
|
15 |
This model is a fine-tuned version of [Salesforce/codet5-base-multi-sum](https://huggingface.co/Salesforce/codet5-base-multi-sum) on the None dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Model description
|
18 |
|
@@ -32,15 +43,37 @@ More information needed
|
|
32 |
|
33 |
The following hyperparameters were used during training:
|
34 |
- learning_rate: 2e-05
|
35 |
-
- train_batch_size:
|
36 |
-
- eval_batch_size:
|
37 |
- seed: 42
|
38 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
39 |
- lr_scheduler_type: linear
|
40 |
-
- num_epochs:
|
41 |
|
42 |
### Training results
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
|
46 |
### Framework versions
|
|
|
2 |
license: bsd-3-clause
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
- bleu
|
8 |
model-index:
|
9 |
- name: CommitPredictorT5
|
10 |
results: []
|
|
|
16 |
# CommitPredictorT5
|
17 |
|
18 |
This model is a fine-tuned version of [Salesforce/codet5-base-multi-sum](https://huggingface.co/Salesforce/codet5-base-multi-sum) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.7376
|
21 |
+
- Rouge1: 0.3735
|
22 |
+
- Rouge2: 0.1504
|
23 |
+
- Rougel: 0.3701
|
24 |
+
- Rougelsum: 0.3697
|
25 |
+
- Gen Len: 19.1365
|
26 |
+
- Bleu: 0.1453
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 32
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 100
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|
|
57 |
+
| 3.2138 | 1.0 | 687 | 2.6919 | 0.3246 | 0.0964 | 0.3216 | 0.3218 | 9.125 | 0.0937 |
|
58 |
+
| 2.7517 | 2.0 | 1374 | 2.5546 | 0.3394 | 0.1042 | 0.3364 | 0.3362 | 8.9803 | 0.1066 |
|
59 |
+
| 2.4305 | 3.0 | 2061 | 2.4836 | 0.3523 | 0.1136 | 0.3496 | 0.3496 | 9.2049 | 0.1123 |
|
60 |
+
| 2.2956 | 4.0 | 2748 | 2.4483 | 0.3658 | 0.126 | 0.3633 | 0.3633 | 9.525 | 0.1146 |
|
61 |
+
| 2.1888 | 5.0 | 3435 | 2.4312 | 0.3665 | 0.1332 | 0.3636 | 0.3634 | 10.0631 | 0.1253 |
|
62 |
+
| 2.0056 | 6.0 | 4122 | 2.4251 | 0.3674 | 0.1352 | 0.3646 | 0.3644 | 9.8365 | 0.1240 |
|
63 |
+
| 1.9128 | 7.0 | 4809 | 2.4289 | 0.3725 | 0.1431 | 0.3694 | 0.3694 | 9.8713 | 0.1295 |
|
64 |
+
| 1.8487 | 8.0 | 5496 | 2.4625 | 0.3683 | 0.1377 | 0.3657 | 0.3659 | 10.0947 | 0.1291 |
|
65 |
+
| 1.6726 | 9.0 | 6183 | 2.4643 | 0.3725 | 0.1449 | 0.3702 | 0.3697 | 13.1967 | 0.1325 |
|
66 |
+
| 1.6292 | 10.0 | 6870 | 2.4716 | 0.3688 | 0.1438 | 0.3664 | 0.3661 | 13.7656 | 0.1307 |
|
67 |
+
| 1.5025 | 11.0 | 7557 | 2.4974 | 0.3762 | 0.1494 | 0.3732 | 0.3732 | 14.0988 | 0.1391 |
|
68 |
+
| 1.4224 | 12.0 | 8244 | 2.5273 | 0.3723 | 0.1489 | 0.3692 | 0.3688 | 12.084 | 0.1388 |
|
69 |
+
| 1.3912 | 13.0 | 8931 | 2.5460 | 0.375 | 0.1499 | 0.3722 | 0.3723 | 13.9529 | 0.1399 |
|
70 |
+
| 1.2766 | 14.0 | 9618 | 2.5771 | 0.3698 | 0.1453 | 0.3668 | 0.3667 | 12.5102 | 0.1386 |
|
71 |
+
| 1.2188 | 15.0 | 10305 | 2.6005 | 0.3789 | 0.1493 | 0.3763 | 0.376 | 16.0545 | 0.1423 |
|
72 |
+
| 1.1779 | 16.0 | 10992 | 2.6296 | 0.3757 | 0.1497 | 0.3729 | 0.3723 | 14.7201 | 0.1423 |
|
73 |
+
| 1.0739 | 17.0 | 11679 | 2.6512 | 0.3749 | 0.1522 | 0.3717 | 0.3715 | 16.0008 | 0.1468 |
|
74 |
+
| 1.0408 | 18.0 | 12366 | 2.6792 | 0.3758 | 0.1494 | 0.3735 | 0.3733 | 18.4971 | 0.1465 |
|
75 |
+
| 0.9567 | 19.0 | 13053 | 2.7153 | 0.3695 | 0.144 | 0.3669 | 0.3667 | 16.2357 | 0.1435 |
|
76 |
+
| 0.9072 | 20.0 | 13740 | 2.7376 | 0.3735 | 0.1504 | 0.3701 | 0.3697 | 19.1365 | 0.1453 |
|
77 |
|
78 |
|
79 |
### Framework versions
|