--- license: bsd-3-clause tags: - generated_from_trainer metrics: - rouge - bleu model-index: - name: CommitPredictorT5 results: [] --- # CommitPredictorT5 This model is a fine-tuned version of [Salesforce/codet5-base-multi-sum](https://huggingface.co/Salesforce/codet5-base-multi-sum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7376 - Rouge1: 0.3735 - Rouge2: 0.1504 - Rougel: 0.3701 - Rougelsum: 0.3697 - Gen Len: 19.1365 - Bleu: 0.1453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:| | 3.2138 | 1.0 | 687 | 2.6919 | 0.3246 | 0.0964 | 0.3216 | 0.3218 | 9.125 | 0.0937 | | 2.7517 | 2.0 | 1374 | 2.5546 | 0.3394 | 0.1042 | 0.3364 | 0.3362 | 8.9803 | 0.1066 | | 2.4305 | 3.0 | 2061 | 2.4836 | 0.3523 | 0.1136 | 0.3496 | 0.3496 | 9.2049 | 0.1123 | | 2.2956 | 4.0 | 2748 | 2.4483 | 0.3658 | 0.126 | 0.3633 | 0.3633 | 9.525 | 0.1146 | | 2.1888 | 5.0 | 3435 | 2.4312 | 0.3665 | 0.1332 | 0.3636 | 0.3634 | 10.0631 | 0.1253 | | 2.0056 | 6.0 | 4122 | 2.4251 | 0.3674 | 0.1352 | 0.3646 | 0.3644 | 9.8365 | 0.1240 | | 1.9128 | 7.0 | 4809 | 2.4289 | 0.3725 | 0.1431 | 0.3694 | 0.3694 | 9.8713 | 0.1295 | | 1.8487 | 8.0 | 5496 | 2.4625 | 0.3683 | 0.1377 | 0.3657 | 0.3659 | 10.0947 | 0.1291 | | 1.6726 | 9.0 | 6183 | 2.4643 | 0.3725 | 0.1449 | 0.3702 | 0.3697 | 13.1967 | 0.1325 | | 1.6292 | 10.0 | 6870 | 2.4716 | 0.3688 | 0.1438 | 0.3664 | 0.3661 | 13.7656 | 0.1307 | | 1.5025 | 11.0 | 7557 | 2.4974 | 0.3762 | 0.1494 | 0.3732 | 0.3732 | 14.0988 | 0.1391 | | 1.4224 | 12.0 | 8244 | 2.5273 | 0.3723 | 0.1489 | 0.3692 | 0.3688 | 12.084 | 0.1388 | | 1.3912 | 13.0 | 8931 | 2.5460 | 0.375 | 0.1499 | 0.3722 | 0.3723 | 13.9529 | 0.1399 | | 1.2766 | 14.0 | 9618 | 2.5771 | 0.3698 | 0.1453 | 0.3668 | 0.3667 | 12.5102 | 0.1386 | | 1.2188 | 15.0 | 10305 | 2.6005 | 0.3789 | 0.1493 | 0.3763 | 0.376 | 16.0545 | 0.1423 | | 1.1779 | 16.0 | 10992 | 2.6296 | 0.3757 | 0.1497 | 0.3729 | 0.3723 | 14.7201 | 0.1423 | | 1.0739 | 17.0 | 11679 | 2.6512 | 0.3749 | 0.1522 | 0.3717 | 0.3715 | 16.0008 | 0.1468 | | 1.0408 | 18.0 | 12366 | 2.6792 | 0.3758 | 0.1494 | 0.3735 | 0.3733 | 18.4971 | 0.1465 | | 0.9567 | 19.0 | 13053 | 2.7153 | 0.3695 | 0.144 | 0.3669 | 0.3667 | 16.2357 | 0.1435 | | 0.9072 | 20.0 | 13740 | 2.7376 | 0.3735 | 0.1504 | 0.3701 | 0.3697 | 19.1365 | 0.1453 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2