a2c-AntBulletEnv-v0 / config.json
mamun4105's picture
Used modified hyperparameters
2e4d705
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c364405e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c36440670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c36440700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c36440790>", "_build": "<function ActorCriticPolicy._build at 0x7f2c36440820>", "forward": "<function ActorCriticPolicy.forward at 0x7f2c364408b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2c36440940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c364409d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2c36440a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c36440af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c36440b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c36440c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2c36ad8ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVuAAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/f///4wKb3J0aG9faW5pdJSJjAhuZXRfYXJjaJRdlChNkAFNLAFljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -3, "ortho_init": false, "net_arch": [400, 300], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686725816169376500, "learning_rate": 0.00073, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL3NhbG1hbXVuL21pbmljb25kYTMvZW52cy9oZi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvc2FsbWFtdW4vbWluaWNvbmRhMy9lbnZzL2hmL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0frrxAjY7KFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD3DCj8dejo/Dr4WPvSsrbwvGBa9o56BPl9kJj/e1ag+xLlfP/5V3D0jM7E9XWQvvs6Nmj/ONsQ9cYY+vsLJFz5qlEo/cYGyvWpVe76J5QI9xalPv2AVdb0xjhe/Va0ovikBEj9sItI+7xjlPpkQED+gVsM+xjxjP8MP+jzYJ8a9f5lMvQZLgj6L2uY+HXuWPraRXz8L5zE9Zdflva3rJL5Zlpo/2S+bPTDTHL0AR6s82EA1P/gcOT8PG3u+jn24vKS6T7+QN169O0MIv0LaOL4pARI/bCLSPu8Y5T6ZEBA/qIAUP2mnOz9tlhM+i+SZvfrwcTyFLIU+Uu8lP7/0mD5MlF8/9jwvPegKAj7DHx2++5qaP8iGpz1erya+H/SnPOvwRj9eULa9y5x7voJJOD3uqE+/Q3B7vY8iDr8OWEG+KQESP2wi0j7vGOU+mRAQP0lR2T7LBkg/ib7iPXz/cb162Cy8lPODPmBc+T6S014+oJ1fP10Kgj2OyMK8kEAhvp4rmT+NkK89B735PIXqfj2szFg/t7CuvdqdeL5L9DQ9/CZPvxeJdL1Q5vu+BLA3vikBEj9sItI+7xjlPpkQED+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA0rPK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAz7r1PQAAAAABx++/AAAAAAj90D0AAAAAVVb4PwAAAAB13ru9AAAAAPkg3j8AAAAA8RjsvAAAAABQCdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcjjHtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOCLYj0AAAAA5dDZvwAAAADsC/q9AAAAABek7z8AAAAA/tFDPQAAAACAc+4/AAAAAIPpAD4AAAAAguXYvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj49zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID2yc68AAAAAMRM478AAAAA/y+XPQAAAABOjvw/AAAAAPnGxj0AAAAAdlvvPwAAAAB4ewK+AAAAAFWU5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs0ru2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsVQJPgAAAABGV/S/AAAAANUX170AAAAA9cr1PwAAAADdNNG9AAAAAGz/7T8AAAAANiPHvQAAAADMg+O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHrDMI7eVLWMAWyUTegDjAF0lEdAshW48aGYbHV9lChoBkdAevVUipvP1WgHTegDaAhHQLIaTlIVdop1fZQoaAZHQILI4EB8x9JoB03oA2gIR0CyHU47A+INdX2UKGgGR0B/b+YWtU4raAdN6ANoCEdAsh6L1ct5EHV9lChoBkdAfrHhKlHjImgHTegDaAhHQLIenPNVzZJ1fZQoaAZHQH7UrftQbddoB03oA2gIR0CyI1sk6cRUdX2UKGgGR0AWtM0xdpqRaAdLKWgIR0CyI7lfAsTWdX2UKGgGRz/okMTewcHXaAdLFWgIR0CyI+gVTJhfdX2UKGgGR0B5W6f5DZ13aAdN6ANoCEdAsiYb6be/H3V9lChoBkdAeXqAG0NSZWgHTegDaAhHQLInEZ7HAAR1fZQoaAZHQHL/bDZUT+NoB03oA2gIR0CyJxytq59WdX2UKGgGR0B+9cCeVcD9aAdN6ANoCEdAsisdi8WbgHV9lChoBkc/8ZgWrOqvNmgHSxRoCEdAsitAnXumanV9lChoBkdAf7fs1sLv1GgHTegDaAhHQLItfuAZsKt1fZQoaAZHP/M4Ju2qkuZoB0sUaAhHQLItwiKziS91fZQoaAZHQIAXJsZYPoVoB03oA2gIR0CyLqHueBhAdX2UKGgGR0B9Yzi704BFaAdN6ANoCEdAsi6sOwxFiXV9lChoBkdAEoqur6tT1mgHSx5oCEdAsi7mfNA1N3V9lChoBkdAez2biZOSGWgHTegDaAhHQLIywpX6qKh1fZQoaAZHQIILj5wfhddoB03oA2gIR0CyNPx6rvLHdX2UKGgGR0B6h3HKfWc0aAdN6ANoCEdAsjWwhePaMHV9lChoBkdAgJbch1Tzd2gHTegDaAhHQLI17LWqcVh1fZQoaAZHQBw1q33Hq/xoB0snaAhHQLI2MBXjlxR1fZQoaAZHQCCrELpiZv1oB0skaAhHQLI2ar/82rJ1fZQoaAZHP+iyAQQL/jtoB0sdaAhHQLI2mbZOBUd1fZQoaAZHQBBlVo6CDmNoB0skaAhHQLI21hKUVzp1fZQoaAZHQBnUUO/cnE5oB0sfaAhHQLI3C8/D+BJ1fZQoaAZHQH/5+Mhouf5oB03oA2gIR0CyOhEGJN0vdX2UKGgGR0B0jGz/p+tsaAdN6ANoCEdAsjyGskpqh3V9lChoBkdAgO3wla8pTmgHTegDaAhHQLI9iifQKKJ1fZQoaAZHP/Ss1KoQ4CJoB0sXaAhHQLI9uAqur6t1fZQoaAZHQCNyB3A2ycFoB0soaAhHQLI+HTkyULV1fZQoaAZHP+OU7CBPKuBoB0sfaAhHQLI+Z2m51/51fZQoaAZHv/FEq2BreqJoB0sZaAhHQLI+nAxSHdp1fZQoaAZHP8zrkbPyCnRoB0sYaAhHQLI+zWyTpxF1fZQoaAZHQDHDilzltCRoB0s5aAhHQLI/RvMKTjh1fZQoaAZHQHtQhIvrWy1oB03oA2gIR0CyP1PRzBAOdX2UKGgGRz+QztTkyULVaAdLGmgIR0CyP4zxTbWVdX2UKGgGR0A3ABSk0rLAaAdLQ2gIR0CyP+eEdvKmdX2UKGgGR0AgAcfeUILPaAdLLWgIR0CyP/2LUCq7dX2UKGgGR0AaWxoqTbFkaAdLJWgIR0CyQDBUaQ3hdX2UKGgGR0AWN+/gzguRaAdLIWgIR0CyQDmoNutPdX2UKGgGR0AZ0rAgxJumaAdLI2gIR0CyQHKIN3GGdX2UKGgGR0Ai8tCiRGMGaAdLKmgIR0CyQHc89wFUdX2UKGgGRz/0UeMhouf3aAdLF2gIR0CyQJeejEehdX2UKGgGR7/UloDgZTAGaAdLF2gIR0CyQJxE8aGYdX2UKGgGR0CDksFrVOKwaAdN6ANoCEdAskIkrjHXE3V9lChoBkdADSwGGEf1YmgHSxtoCEdAskJQKD0163V9lChoBkdAGaIUahpQDWgHSyJoCEdAskKItdzGP3V9lChoBkdAgLZguqWC3GgHTegDaAhHQLJENBmPHT91fZQoaAZHP+mORT0g8r9oB0sdaAhHQLJEYseGO+91fZQoaAZHQCJPrdFfAsVoB0sqaAhHQLJEv0mtyPx1fZQoaAZHP+ASdvsJIDpoB0sUaAhHQLJE5KaXrt51fZQoaAZHP+/QzDXOGCZoB0sWaAhHQLJFDyon8bd1fZQoaAZHP/Z+pOvdM0xoB0sUaAhHQLJFOHf/FR51fZQoaAZHQHuoR99c8kloB02fAmgIR0CyRVeSGJvYdX2UKGgGRz/80jC53C9AaAdLGmgIR0CyRY/AXVLBdX2UKGgGR0CCO/1oxpL3aAdN6ANoCEdAskfxooNNJ3V9lChoBkc/7Q9zOoo/imgHSxRoCEdAskghyBClanV9lChoBke/+Mi+tbLU1GgHSxpoCEdAskhZclgMMXV9lChoBkc/0DmOlwcYImgHSxRoCEdAskiH1VYISnV9lChoBkc/4bi++M6zV2gHSxRoCEdAskiu8J2MbXV9lChoBkc//Qpz90ihWmgHSxloCEdAskjlTho/RnV9lChoBkc/3JiVjZtelmgHSxVoCEdAskkRb9qDb3V9lChoBke/8ja9K28Zk2gHSx5oCEdAskllkc0cfnV9lChoBkdADIvf0mMOw2gHSxloCEdAskmgMoc7yXV9lChoBkdAEZ7Qswtap2gHSxtoCEdAsknSzByjpXV9lChoBkdAIJzByjpLVWgHSyZoCEdAskoegi/wiXV9lChoBkdAgM9VmapgkWgHTegDaAhHQLJKdQ+EAYJ1fZQoaAZHP+onx8UmD15oB0sUaAhHQLJKpDGLk0d1fZQoaAZHQIFYxFkQPI5oB03oA2gIR0CyTWdkOI69dX2UKGgGR0CCwS2BJ7LMaAdN6ANoCEdAsk294keIVXV9lChoBkc/8HSOR1X/52gHSxloCEdAsk3+ozeoDXV9lChoBkdAeGx27FsHjmgHTegDaAhHQLJSW8IzFdd1fZQoaAZHQHlUQQlKK51oB03oA2gIR0CyUwRVQyh0dX2UKGgGR0B8Y/crRSgoaAdN6ANoCEdAslV+phnanXV9lChoBkdAf0mifxtpEmgHTegDaAhHQLJV8Vk+X7d1fZQoaAZHP+eQOFxn3+NoB0sVaAhHQLJWEu3+dbx1fZQoaAZHQH58R2GIsRRoB03oA2gIR0CyWeZrxiG4dX2UKGgGRz/lLgXMyJsPaAdLHGgIR0CyWh44ACGOdX2UKGgGRz/oiCBf8dgfaAdLFmgIR0CyWkRR64UfdX2UKGgGR0CACfrs0HhTaAdN6ANoCEdAslpQdkrf+HV9lChoBkdAe5OjFyaNM2gHTegDaAhHQLJclm03OwB1fZQoaAZHQIANxGUfPopoB03oA2gIR0CyXSdG/etTdX2UKGgGR0B9l9vl2eQNaAdN6ANoCEdAsmEr1tfoinV9lChoBkdAgJRInrpqymgHTegDaAhHQLJhOXiR4hV1fZQoaAZHQBzTasZHd45oB0siaAhHQLJhaSuQp4N1fZQoaAZHP+ggM+eOGTNoB0sVaAhHQLJhi7Qb+991fZQoaAZHQBe934bjtHBoB0siaAhHQLJhw114gRt1fZQoaAZHQH9/fqHGjsVoB03oA2gIR0CyY6pp8F6idX2UKGgGRz/w8D4gzP8iaAdLFGgIR0CyY9+4gA6udX2UKGgGR0CAsY6CDmKZaAdN6ANoCEdAsmSl/J/5L3V9lChoBkdADwaBqbjLjmgHSx9oCEdAsmUBgc94eXV9lChoBkdAf43nWrfce2gHTegDaAhHQLJorGH58Bx1fZQoaAZHQIAcjLZBcA1oB03oA2gIR0CyaUihWYF8dX2UKGgGRz/SD3/Pw/gSaAdLFGgIR0CyaWwY+B6KdX2UKGgGR0CAAIDNhVlxaAdN6ANoCEdAsmvZr9ETg3V9lChoBkc/hKIznA6+4GgHSxxoCEdAsmwxH+ZPVXV9lChoBkdADYdZJTVDr2gHSx1oCEdAsmx/DwYtQXV9lChoBkdAeNOUaya/h2gHTegDaAhHQLJs3WyTpxF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}