mamun4105 commited on
Commit
af3971b
1 Parent(s): 2e4d705

Used modified hyperparameters

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 441.37 +/- 163.32
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 1361.28 +/- 214.96
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d7166d2e46f71ddc669cb2a87a8315e8094d90f6eb6a9e2a77be46da3e427ad9
3
- size 2175605
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e059b4c2d53a61d339f9e435c7d4989a121991935201be0435677aaa4d429c16
3
+ size 129248
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,31 +4,27 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c364405e0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c36440670>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c36440700>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c36440790>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f2c36440820>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f2c364408b0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2c36440940>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c364409d0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f2c36440a60>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c36440af0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c36440b80>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c36440c10>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f2c36ad8ec0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
24
  ":type:": "<class 'dict'>",
25
- ":serialized:": "gAWVuAAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/f///4wKb3J0aG9faW5pdJSJjAhuZXRfYXJjaJRdlChNkAFNLAFljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
- "log_std_init": -3,
27
  "ortho_init": false,
28
- "net_arch": [
29
- 400,
30
- 300
31
- ],
32
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
33
  "optimizer_kwargs": {
34
  "alpha": 0.99,
@@ -41,16 +37,16 @@
41
  "_num_timesteps_at_start": 0,
42
  "seed": null,
43
  "action_noise": null,
44
- "start_time": 1686725816169376500,
45
- "learning_rate": 0.00073,
46
  "tensorboard_log": null,
47
  "lr_schedule": {
48
  ":type:": "<class 'function'>",
49
- ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL3NhbG1hbXVuL21pbmljb25kYTMvZW52cy9oZi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvc2FsbWFtdW4vbWluaWNvbmRhMy9lbnZzL2hmL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0frrxAjY7KFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
50
  },
51
  "_last_obs": {
52
  ":type:": "<class 'numpy.ndarray'>",
53
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD3DCj8dejo/Dr4WPvSsrbwvGBa9o56BPl9kJj/e1ag+xLlfP/5V3D0jM7E9XWQvvs6Nmj/ONsQ9cYY+vsLJFz5qlEo/cYGyvWpVe76J5QI9xalPv2AVdb0xjhe/Va0ovikBEj9sItI+7xjlPpkQED+gVsM+xjxjP8MP+jzYJ8a9f5lMvQZLgj6L2uY+HXuWPraRXz8L5zE9Zdflva3rJL5Zlpo/2S+bPTDTHL0AR6s82EA1P/gcOT8PG3u+jn24vKS6T7+QN169O0MIv0LaOL4pARI/bCLSPu8Y5T6ZEBA/qIAUP2mnOz9tlhM+i+SZvfrwcTyFLIU+Uu8lP7/0mD5MlF8/9jwvPegKAj7DHx2++5qaP8iGpz1erya+H/SnPOvwRj9eULa9y5x7voJJOD3uqE+/Q3B7vY8iDr8OWEG+KQESP2wi0j7vGOU+mRAQP0lR2T7LBkg/ib7iPXz/cb162Cy8lPODPmBc+T6S014+oJ1fP10Kgj2OyMK8kEAhvp4rmT+NkK89B735PIXqfj2szFg/t7CuvdqdeL5L9DQ9/CZPvxeJdL1Q5vu+BLA3vikBEj9sItI+7xjlPpkQED+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
54
  },
55
  "_last_episode_starts": {
56
  ":type:": "<class 'numpy.ndarray'>",
@@ -58,7 +54,7 @@
58
  },
59
  "_last_original_obs": {
60
  ":type:": "<class 'numpy.ndarray'>",
61
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA0rPK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAz7r1PQAAAAABx++/AAAAAAj90D0AAAAAVVb4PwAAAAB13ru9AAAAAPkg3j8AAAAA8RjsvAAAAABQCdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcjjHtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOCLYj0AAAAA5dDZvwAAAADsC/q9AAAAABek7z8AAAAA/tFDPQAAAACAc+4/AAAAAIPpAD4AAAAAguXYvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj49zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID2yc68AAAAAMRM478AAAAA/y+XPQAAAABOjvw/AAAAAPnGxj0AAAAAdlvvPwAAAAB4ewK+AAAAAFWU5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs0ru2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsVQJPgAAAABGV/S/AAAAANUX170AAAAA9cr1PwAAAADdNNG9AAAAAGz/7T8AAAAANiPHvQAAAADMg+O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
62
  },
63
  "_episode_num": 0,
64
  "use_sde": true,
@@ -67,7 +63,7 @@
67
  "_stats_window_size": 100,
68
  "ep_info_buffer": {
69
  ":type:": "<class 'collections.deque'>",
70
- ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHrDMI7eVLWMAWyUTegDjAF0lEdAshW48aGYbHV9lChoBkdAevVUipvP1WgHTegDaAhHQLIaTlIVdop1fZQoaAZHQILI4EB8x9JoB03oA2gIR0CyHU47A+INdX2UKGgGR0B/b+YWtU4raAdN6ANoCEdAsh6L1ct5EHV9lChoBkdAfrHhKlHjImgHTegDaAhHQLIenPNVzZJ1fZQoaAZHQH7UrftQbddoB03oA2gIR0CyI1sk6cRUdX2UKGgGR0AWtM0xdpqRaAdLKWgIR0CyI7lfAsTWdX2UKGgGRz/okMTewcHXaAdLFWgIR0CyI+gVTJhfdX2UKGgGR0B5W6f5DZ13aAdN6ANoCEdAsiYb6be/H3V9lChoBkdAeXqAG0NSZWgHTegDaAhHQLInEZ7HAAR1fZQoaAZHQHL/bDZUT+NoB03oA2gIR0CyJxytq59WdX2UKGgGR0B+9cCeVcD9aAdN6ANoCEdAsisdi8WbgHV9lChoBkc/8ZgWrOqvNmgHSxRoCEdAsitAnXumanV9lChoBkdAf7fs1sLv1GgHTegDaAhHQLItfuAZsKt1fZQoaAZHP/M4Ju2qkuZoB0sUaAhHQLItwiKziS91fZQoaAZHQIAXJsZYPoVoB03oA2gIR0CyLqHueBhAdX2UKGgGR0B9Yzi704BFaAdN6ANoCEdAsi6sOwxFiXV9lChoBkdAEoqur6tT1mgHSx5oCEdAsi7mfNA1N3V9lChoBkdAez2biZOSGWgHTegDaAhHQLIywpX6qKh1fZQoaAZHQIILj5wfhddoB03oA2gIR0CyNPx6rvLHdX2UKGgGR0B6h3HKfWc0aAdN6ANoCEdAsjWwhePaMHV9lChoBkdAgJbch1Tzd2gHTegDaAhHQLI17LWqcVh1fZQoaAZHQBw1q33Hq/xoB0snaAhHQLI2MBXjlxR1fZQoaAZHQCCrELpiZv1oB0skaAhHQLI2ar/82rJ1fZQoaAZHP+iyAQQL/jtoB0sdaAhHQLI2mbZOBUd1fZQoaAZHQBBlVo6CDmNoB0skaAhHQLI21hKUVzp1fZQoaAZHQBnUUO/cnE5oB0sfaAhHQLI3C8/D+BJ1fZQoaAZHQH/5+Mhouf5oB03oA2gIR0CyOhEGJN0vdX2UKGgGR0B0jGz/p+tsaAdN6ANoCEdAsjyGskpqh3V9lChoBkdAgO3wla8pTmgHTegDaAhHQLI9iifQKKJ1fZQoaAZHP/Ss1KoQ4CJoB0sXaAhHQLI9uAqur6t1fZQoaAZHQCNyB3A2ycFoB0soaAhHQLI+HTkyULV1fZQoaAZHP+OU7CBPKuBoB0sfaAhHQLI+Z2m51/51fZQoaAZHv/FEq2BreqJoB0sZaAhHQLI+nAxSHdp1fZQoaAZHP8zrkbPyCnRoB0sYaAhHQLI+zWyTpxF1fZQoaAZHQDHDilzltCRoB0s5aAhHQLI/RvMKTjh1fZQoaAZHQHtQhIvrWy1oB03oA2gIR0CyP1PRzBAOdX2UKGgGRz+QztTkyULVaAdLGmgIR0CyP4zxTbWVdX2UKGgGR0A3ABSk0rLAaAdLQ2gIR0CyP+eEdvKmdX2UKGgGR0AgAcfeUILPaAdLLWgIR0CyP/2LUCq7dX2UKGgGR0AaWxoqTbFkaAdLJWgIR0CyQDBUaQ3hdX2UKGgGR0AWN+/gzguRaAdLIWgIR0CyQDmoNutPdX2UKGgGR0AZ0rAgxJumaAdLI2gIR0CyQHKIN3GGdX2UKGgGR0Ai8tCiRGMGaAdLKmgIR0CyQHc89wFUdX2UKGgGRz/0UeMhouf3aAdLF2gIR0CyQJeejEehdX2UKGgGR7/UloDgZTAGaAdLF2gIR0CyQJxE8aGYdX2UKGgGR0CDksFrVOKwaAdN6ANoCEdAskIkrjHXE3V9lChoBkdADSwGGEf1YmgHSxtoCEdAskJQKD0163V9lChoBkdAGaIUahpQDWgHSyJoCEdAskKItdzGP3V9lChoBkdAgLZguqWC3GgHTegDaAhHQLJENBmPHT91fZQoaAZHP+mORT0g8r9oB0sdaAhHQLJEYseGO+91fZQoaAZHQCJPrdFfAsVoB0sqaAhHQLJEv0mtyPx1fZQoaAZHP+ASdvsJIDpoB0sUaAhHQLJE5KaXrt51fZQoaAZHP+/QzDXOGCZoB0sWaAhHQLJFDyon8bd1fZQoaAZHP/Z+pOvdM0xoB0sUaAhHQLJFOHf/FR51fZQoaAZHQHuoR99c8kloB02fAmgIR0CyRVeSGJvYdX2UKGgGRz/80jC53C9AaAdLGmgIR0CyRY/AXVLBdX2UKGgGR0CCO/1oxpL3aAdN6ANoCEdAskfxooNNJ3V9lChoBkc/7Q9zOoo/imgHSxRoCEdAskghyBClanV9lChoBke/+Mi+tbLU1GgHSxpoCEdAskhZclgMMXV9lChoBkc/0DmOlwcYImgHSxRoCEdAskiH1VYISnV9lChoBkc/4bi++M6zV2gHSxRoCEdAskiu8J2MbXV9lChoBkc//Qpz90ihWmgHSxloCEdAskjlTho/RnV9lChoBkc/3JiVjZtelmgHSxVoCEdAskkRb9qDb3V9lChoBke/8ja9K28Zk2gHSx5oCEdAskllkc0cfnV9lChoBkdADIvf0mMOw2gHSxloCEdAskmgMoc7yXV9lChoBkdAEZ7Qswtap2gHSxtoCEdAsknSzByjpXV9lChoBkdAIJzByjpLVWgHSyZoCEdAskoegi/wiXV9lChoBkdAgM9VmapgkWgHTegDaAhHQLJKdQ+EAYJ1fZQoaAZHP+onx8UmD15oB0sUaAhHQLJKpDGLk0d1fZQoaAZHQIFYxFkQPI5oB03oA2gIR0CyTWdkOI69dX2UKGgGR0CCwS2BJ7LMaAdN6ANoCEdAsk294keIVXV9lChoBkc/8HSOR1X/52gHSxloCEdAsk3+ozeoDXV9lChoBkdAeGx27FsHjmgHTegDaAhHQLJSW8IzFdd1fZQoaAZHQHlUQQlKK51oB03oA2gIR0CyUwRVQyh0dX2UKGgGR0B8Y/crRSgoaAdN6ANoCEdAslV+phnanXV9lChoBkdAf0mifxtpEmgHTegDaAhHQLJV8Vk+X7d1fZQoaAZHP+eQOFxn3+NoB0sVaAhHQLJWEu3+dbx1fZQoaAZHQH58R2GIsRRoB03oA2gIR0CyWeZrxiG4dX2UKGgGRz/lLgXMyJsPaAdLHGgIR0CyWh44ACGOdX2UKGgGRz/oiCBf8dgfaAdLFmgIR0CyWkRR64UfdX2UKGgGR0CACfrs0HhTaAdN6ANoCEdAslpQdkrf+HV9lChoBkdAe5OjFyaNM2gHTegDaAhHQLJclm03OwB1fZQoaAZHQIANxGUfPopoB03oA2gIR0CyXSdG/etTdX2UKGgGR0B9l9vl2eQNaAdN6ANoCEdAsmEr1tfoinV9lChoBkdAgJRInrpqymgHTegDaAhHQLJhOXiR4hV1fZQoaAZHQBzTasZHd45oB0siaAhHQLJhaSuQp4N1fZQoaAZHP+ggM+eOGTNoB0sVaAhHQLJhi7Qb+991fZQoaAZHQBe934bjtHBoB0siaAhHQLJhw114gRt1fZQoaAZHQH9/fqHGjsVoB03oA2gIR0CyY6pp8F6idX2UKGgGRz/w8D4gzP8iaAdLFGgIR0CyY9+4gA6udX2UKGgGR0CAsY6CDmKZaAdN6ANoCEdAsmSl/J/5L3V9lChoBkdADwaBqbjLjmgHSx9oCEdAsmUBgc94eXV9lChoBkdAf43nWrfce2gHTegDaAhHQLJorGH58Bx1fZQoaAZHQIAcjLZBcA1oB03oA2gIR0CyaUihWYF8dX2UKGgGRz/SD3/Pw/gSaAdLFGgIR0CyaWwY+B6KdX2UKGgGR0CAAIDNhVlxaAdN6ANoCEdAsmvZr9ETg3V9lChoBkc/hKIznA6+4GgHSxxoCEdAsmwxH+ZPVXV9lChoBkdADYdZJTVDr2gHSx1oCEdAsmx/DwYtQXV9lChoBkdAeNOUaya/h2gHTegDaAhHQLJs3WyTpxF1ZS4="
71
  },
72
  "ep_success_buffer": {
73
  ":type:": "<class 'collections.deque'>",
@@ -83,7 +79,7 @@
83
  "normalize_advantage": false,
84
  "observation_space": {
85
  ":type:": "<class 'gym.spaces.box.Box'>",
86
- ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
87
  "dtype": "float32",
88
  "_shape": [
89
  28
@@ -96,7 +92,7 @@
96
  },
97
  "action_space": {
98
  ":type:": "<class 'gym.spaces.box.Box'>",
99
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
100
  "dtype": "float32",
101
  "_shape": [
102
  8
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1043751b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc104375240>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1043752d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc104375360>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc1043753f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc104375480>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc104375510>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1043755a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc104375630>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1043756c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc104375750>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1043757e0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fc10436e6c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
24
  ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
  "ortho_init": false,
 
 
 
 
28
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
  "optimizer_kwargs": {
30
  "alpha": 0.99,
 
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
+ "start_time": 1686736479252132463,
41
+ "learning_rate": 0.00096,
42
  "tensorboard_log": null,
43
  "lr_schedule": {
44
  ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
  },
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJfqkT9vTMK/4rRDvkfl5z/YMwLAbnwePqytSz3f0kO/PuQUvfuxjL9b1/k/cFjyPg6dpr+kr0nA8/KovmauUT8jtTO/cQUOwClK8TzuCoE/jcJevySnJL+n5Ry/nMoowFSPcT8TA/O/TagJP9sZpb/OF5E/x3Cpv3w+fj15p+o/Mzknv9J/mz/phgq/CoJmv1j8Hj7Dfgo/scfzOniaEUDU3tO+71L9Pq35FT5vwTy+w/BGP1JzS7/Nkmu/6KFfviP/Xb8MnPg9kojKP8A8Jr/Tpoe/UNcGP02oCT/yeEY/+BQ4PnmTO7+YdQY/5XScP5g/A7+9hv8+XLfVvoQviD3p4iM/A5fKPm//dT16S3A+p21Rv/uhbb9eHp89qgUUvx+LQT9yA1G/oLsMv8AcjT7AClq/1S1Pvj7QIz4/SrS/VI9xP1DXBj9NqAk/2xmlvxRs4D4CKZC+eeYkPwheQz+jtkG/XrpiPrY/AL+PfbU+fPgHv3oibz4T7QY+f+TjPijUPL/bGyS/CccyvlcoxT6vZgA/kqOEvzxzbb9Q/Uc+Maxcv9S9Aj5icEI+Bjarv9Omh79Q1wY/TagJP9sZpb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
 
54
  },
55
  "_last_original_obs": {
56
  ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB8dQg3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqvkjPAAAAADBqeW/AAAAAFFR/j0AAAAABkPiPwAAAABrxAE+AAAAANDN7j8AAAAA5b7nvQAAAADsa/W/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh+sWNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAZMYb0AAAAAv6v2vwAAAACr/A0+AAAAANKj8D8AAAAAQSh6PQAAAACiu9o/AAAAAEXDCb4AAAAAJi/8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkoB7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICrLJK9AAAAADKA/78AAAAAKNUnvQAAAADT0/Y/AAAAAEQcrjwAAAAAPh3yPwAAAABotQo+AAAAAI7P978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9lpc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfJ2mvAAAAAAz2fq/AAAAAPo4oz0AAAAArvXjPwAAAAA8wwq+AAAAAPX69z8AAAAANGG8vQAAAADSaNq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
  },
59
  "_episode_num": 0,
60
  "use_sde": true,
 
63
  "_stats_window_size": 100,
64
  "ep_info_buffer": {
65
  ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSzibpeNT+MAWyUTegDjAF0lEdArPcBftx+8XV9lChoBkdAkoYmTgVGkWgHTegDaAhHQKz5SVoHs1N1fZQoaAZHQJTOfeBQN1BoB03oA2gIR0Cs+rK6OHWSdX2UKGgGR0CV7epwCKaYaAdN6ANoCEdArQVFUhmoSHV9lChoBkdAlaRu2uxKQWgHTegDaAhHQK0Ial67dzp1fZQoaAZHQJXJXNqxkd5oB03oA2gIR0CtClyCOFQEdX2UKGgGR0CW11W1+iJwaAdN6ANoCEdArQtXvfCQ93V9lChoBkdAk4GVsDW9UWgHTegDaAhHQK0SjtvXK8t1fZQoaAZHQJOmKTV2A5JoB03oA2gIR0CtFawj+rEMdX2UKGgGR0CWdgvrnkksaAdN6ANoCEdArReoIyCWeHV9lChoBkdAlOUx8D0UXmgHTegDaAhHQK0Y04Nqgyx1fZQoaAZHQJS33xmTTv1oB03oA2gIR0CtI4/UF0PpdX2UKGgGR0CQgUJPqLTAaAdN6ANoCEdArSa3gFX7tXV9lChoBkdAlym7xy4nW2gHTegDaAhHQK0orCl7+kx1fZQoaAZHQJVt7kiliz9oB03oA2gIR0CtKaGelKsddX2UKGgGR0CWoXrE9+w1aAdN6ANoCEdArTDBiG34K3V9lChoBkdAkDPl+Vkc0mgHTegDaAhHQK0z6RigCfZ1fZQoaAZHQJkwfoQnQY1oB03oA2gIR0CtNeK1og3cdX2UKGgGR0CW4hsz2vjfaAdN6ANoCEdArTbdhoduHnV9lChoBkdAl7U+aWom5WgHTegDaAhHQK1BMKrq+rV1fZQoaAZHQJc0W9Gqgh9oB03oA2gIR0CtRRv91loUdX2UKGgGR0CaOcZvUBn0aAdN6ANoCEdArUcPJiiItXV9lChoBkdAmCcva6BiC2gHTegDaAhHQK1IA9TP0I11fZQoaAZHQJV1Aal1r7BoB03oA2gIR0CtTzQj2SMcdX2UKGgGR0CYJOE8q4H5aAdN6ANoCEdArVJkTtb9qHV9lChoBkdAmT3wvDgqE2gHTegDaAhHQK1UdQBPsRh1fZQoaAZHQJe0yNEPUa1oB03oA2gIR0CtVXb9hqj8dX2UKGgGR0CTEb8uzyBkaAdN6ANoCEdArV96ojv/i3V9lChoBkdAkO2N+gDifmgHTegDaAhHQK1j9i+cpb51fZQoaAZHQJUZtjqfOD9oB03oA2gIR0CtZexfnfVJdX2UKGgGR0CUhQ2gFotdaAdN6ANoCEdArWbhgVoHs3V9lChoBkdAkAQJ8KG+K2gHTegDaAhHQK1uBiVjZth1fZQoaAZHQJYIpTDO1OVoB03oA2gIR0CtcTFEqlP8dX2UKGgGR0CT68RzzVc2aAdN6ANoCEdArXMyhL5AQnV9lChoBkdAkenKlLvkR2gHTegDaAhHQK10MHsTnJV1fZQoaAZHQJTIiTkhib5oB03oA2gIR0CtfWRfF72MdX2UKGgGR0CW/YrRBu4xaAdN6ANoCEdArYK6/RE4N3V9lChoBkdAllcXmA9V3mgHTegDaAhHQK2GaVKPGQ11fZQoaAZHQJY96B9Tgl5oB03oA2gIR0Cth/HOKO1fdX2UKGgGR0CRWpblRxcWaAdN6ANoCEdArZDt+iJwbXV9lChoBkdAktowAlv602gHTegDaAhHQK2UA5hBqsV1fZQoaAZHQJPVxlyzXz1oB03oA2gIR0CtlfQM6RyPdX2UKGgGR0CRpX5s0pEyaAdN6ANoCEdArZbs6mwaBXV9lChoBkdAmJJtNahYeWgHTegDaAhHQK2gWadc0Lt1fZQoaAZHQJTocQNCqp9oB03oA2gIR0CtpO7jkuHvdX2UKGgGR0CZYsFglWwNaAdN6ANoCEdArabcXHim23V9lChoBkdAlylBVU+9rWgHTegDaAhHQK2n1SOR1YB1fZQoaAZHQJcIwNAkcCJoB03oA2gIR0CtrwT+m3vydX2UKGgGR0CZrtrCWNWEaAdN6ANoCEdArbIRsCT2WnV9lChoBkdAl2fsjiXIEWgHTegDaAhHQK20DugHu7Z1fZQoaAZHQIbIBBsyi25oB03oA2gIR0CttQr26ClKdX2UKGgGR0CVhB0yP+4taAdN6ANoCEdArb3w1P3ztnV9lChoBkdAk6tUyP+4smgHTegDaAhHQK3CumO2iL51fZQoaAZHQJfi2iAUcn5oB03oA2gIR0CtxSXai9IxdX2UKGgGR0CWln+evpyIaAdN6ANoCEdArcYh1s+FDnV9lChoBkdAmHHgztTkyWgHTegDaAhHQK3NOcGTs6d1fZQoaAZHQJOgYAZKnNxoB03oA2gIR0Ct0FYDTz/ZdX2UKGgGR0CSWwJTER8MaAdN6ANoCEdArdJLjin5z3V9lChoBkdAl9vbcfvF32gHTegDaAhHQK3TRp35eqt1fZQoaAZHQJHC+XfIjnpoB03oA2gIR0Ct26IX0oSddX2UKGgGR0CWoZ0yxiXqaAdN6ANoCEdAreBr26ClJ3V9lChoBkdAlilNZaFEiWgHTegDaAhHQK3jjnbqQil1fZQoaAZHQJZowFINEw5oB03oA2gIR0Ct5IUMG5c1dX2UKGgGR0CTMilb/wRXaAdN6ANoCEdArevHTVlPJ3V9lChoBkdAldI4K+i8F2gHTegDaAhHQK3u3003wTd1fZQoaAZHQJSLrEZR8+loB03oA2gIR0Ct8N0xmCiAdX2UKGgGR0CSCwwJPZZkaAdN6ANoCEdArfHcJOWSlnV9lChoBkdAmJoyOvMbFWgHTegDaAhHQK3505MlC1J1fZQoaAZHQJbwp3gUDdRoB03oA2gIR0Ct/nooE0SAdX2UKGgGR0CXjCkZrHlwaAdN6ANoCEdArgGLmKZUk3V9lChoBkdAlPBke2d/a2gHTegDaAhHQK4DAuyNXHR1fZQoaAZHQJbstPXTVlRoB03oA2gIR0CuCjK0dBBzdX2UKGgGR0CXrfHQhOgyaAdN6ANoCEdArg0/nIQvpXV9lChoBkdAl5y0SRKYiWgHTegDaAhHQK4PMn/DLr51fZQoaAZHQJRMJZ1V5rxoB03oA2gIR0CuEC0GeMAFdX2UKGgGR0CY4YZQYUFjaAdN6ANoCEdArheF78ejmHV9lChoBkdAk2oPRRdhRmgHTegDaAhHQK4b+2Yv38J1fZQoaAZHQJOcMQYk3S9oB03oA2gIR0CuHxKjSG8FdX2UKGgGR0CSpOQjD8+BaAdN6ANoCEdAriCbTc6/7HV9lChoBkdAmDn8figkC2gHTegDaAhHQK4of+DOC5F1fZQoaAZHQJTHeUD+zdFoB03oA2gIR0CuK5nDaXa8dX2UKGgGR0CTQpRf4REnaAdN6ANoCEdAri2MrZrYXnV9lChoBkdAkFA4ZVGTcWgHTegDaAhHQK4uhM36yjZ1fZQoaAZHQJWXzE9+w1RoB03oA2gIR0CuNa35eqrBdX2UKGgGR0CZtQma6STyaAdN6ANoCEdArjm2evpyInV9lChoBkdAle9oTPBzm2gHTegDaAhHQK48l+8XenB1fZQoaAZHQJh6ZHavicZoB03oA2gIR0CuPhfOUt7KdX2UKGgGR0CYH357w8W9aAdN6ANoCEdArkZ/0K7ZnXV9lChoBkdAlwdhoqTbFmgHTegDaAhHQK5JqdMCcPR1fZQoaAZHQJWoeslsxfxoB03oA2gIR0CuS5RWLgn/dX2UKGgGR0CU6BOqNp/PaAdN6ANoCEdArkyJBJI1+HV9lChoBkdAlYqJ2ECeVmgHTegDaAhHQK5TtHaN+9d1fZQoaAZHQJdB7oq0+khoB03oA2gIR0CuVz3Adn01dX2UKGgGR0CXUX5Etuk2aAdN6ANoCEdArloLOJLuhXV9lChoBkdAmQlVvMr3CmgHTegDaAhHQK5biEcKgI11fZQoaAZHQJmk1Y3eenRoB03oA2gIR0CuZLuQIUrTdX2UKGgGR0CYv6evZAY6aAdN6ANoCEdArmfBR8+ianV9lChoBkdAmC5+jh1klWgHTegDaAhHQK5pq/HHWBl1fZQoaAZHQJrIrV5KODJoB03oA2gIR0CuaqCzsyBTdX2UKGgGR0CYbf0PH1e0aAdN6ANoCEdArnG5I8QqZ3VlLg=="
67
  },
68
  "ep_success_buffer": {
69
  ":type:": "<class 'collections.deque'>",
 
79
  "normalize_advantage": false,
80
  "observation_space": {
81
  ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
  "dtype": "float32",
84
  "_shape": [
85
  28
 
92
  },
93
  "action_space": {
94
  ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
  "dtype": "float32",
97
  "_shape": [
98
  8
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6f1c0ec6c8b5eaf09a62d845a6166299514e289d20f69b9a294a6ab707b110e9
3
- size 1079294
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d9c76bcbcd77b60884fb15605cc017aa461644b4350aca6450e960750eea486
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a419035e1faf8d2a1c2ecaea4b363541635b5e9911e5a71c71f1362a5caf2761
3
- size 1080062
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d892d99a43f0fb8d5f3ab22fe95c00d5e0e76e0f2e5cb4230338c48e93aed0c
3
+ size 56894
a2c-AntBulletEnv-v0/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- - OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Apr 2 22:23:49 UTC 2021
2
- - Python: 3.9.16
3
  - Stable-Baselines3: 1.8.0
4
- - PyTorch: 1.11.0+cu102
5
  - GPU Enabled: True
6
- - Numpy: 1.21.2
7
  - Gym: 0.21.0
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
  - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
  - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c364405e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c36440670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c36440700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c36440790>", "_build": "<function ActorCriticPolicy._build at 0x7f2c36440820>", "forward": "<function ActorCriticPolicy.forward at 0x7f2c364408b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2c36440940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c364409d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2c36440a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c36440af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c36440b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c36440c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2c36ad8ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVuAAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/f///4wKb3J0aG9faW5pdJSJjAhuZXRfYXJjaJRdlChNkAFNLAFljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -3, "ortho_init": false, "net_arch": [400, 300], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686725816169376500, "learning_rate": 0.00073, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL3NhbG1hbXVuL21pbmljb25kYTMvZW52cy9oZi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvc2FsbWFtdW4vbWluaWNvbmRhMy9lbnZzL2hmL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0frrxAjY7KFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD3DCj8dejo/Dr4WPvSsrbwvGBa9o56BPl9kJj/e1ag+xLlfP/5V3D0jM7E9XWQvvs6Nmj/ONsQ9cYY+vsLJFz5qlEo/cYGyvWpVe76J5QI9xalPv2AVdb0xjhe/Va0ovikBEj9sItI+7xjlPpkQED+gVsM+xjxjP8MP+jzYJ8a9f5lMvQZLgj6L2uY+HXuWPraRXz8L5zE9Zdflva3rJL5Zlpo/2S+bPTDTHL0AR6s82EA1P/gcOT8PG3u+jn24vKS6T7+QN169O0MIv0LaOL4pARI/bCLSPu8Y5T6ZEBA/qIAUP2mnOz9tlhM+i+SZvfrwcTyFLIU+Uu8lP7/0mD5MlF8/9jwvPegKAj7DHx2++5qaP8iGpz1erya+H/SnPOvwRj9eULa9y5x7voJJOD3uqE+/Q3B7vY8iDr8OWEG+KQESP2wi0j7vGOU+mRAQP0lR2T7LBkg/ib7iPXz/cb162Cy8lPODPmBc+T6S014+oJ1fP10Kgj2OyMK8kEAhvp4rmT+NkK89B735PIXqfj2szFg/t7CuvdqdeL5L9DQ9/CZPvxeJdL1Q5vu+BLA3vikBEj9sItI+7xjlPpkQED+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA0rPK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAz7r1PQAAAAABx++/AAAAAAj90D0AAAAAVVb4PwAAAAB13ru9AAAAAPkg3j8AAAAA8RjsvAAAAABQCdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcjjHtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOCLYj0AAAAA5dDZvwAAAADsC/q9AAAAABek7z8AAAAA/tFDPQAAAACAc+4/AAAAAIPpAD4AAAAAguXYvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj49zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID2yc68AAAAAMRM478AAAAA/y+XPQAAAABOjvw/AAAAAPnGxj0AAAAAdlvvPwAAAAB4ewK+AAAAAFWU5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs0ru2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsVQJPgAAAABGV/S/AAAAANUX170AAAAA9cr1PwAAAADdNNG9AAAAAGz/7T8AAAAANiPHvQAAAADMg+O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHrDMI7eVLWMAWyUTegDjAF0lEdAshW48aGYbHV9lChoBkdAevVUipvP1WgHTegDaAhHQLIaTlIVdop1fZQoaAZHQILI4EB8x9JoB03oA2gIR0CyHU47A+INdX2UKGgGR0B/b+YWtU4raAdN6ANoCEdAsh6L1ct5EHV9lChoBkdAfrHhKlHjImgHTegDaAhHQLIenPNVzZJ1fZQoaAZHQH7UrftQbddoB03oA2gIR0CyI1sk6cRUdX2UKGgGR0AWtM0xdpqRaAdLKWgIR0CyI7lfAsTWdX2UKGgGRz/okMTewcHXaAdLFWgIR0CyI+gVTJhfdX2UKGgGR0B5W6f5DZ13aAdN6ANoCEdAsiYb6be/H3V9lChoBkdAeXqAG0NSZWgHTegDaAhHQLInEZ7HAAR1fZQoaAZHQHL/bDZUT+NoB03oA2gIR0CyJxytq59WdX2UKGgGR0B+9cCeVcD9aAdN6ANoCEdAsisdi8WbgHV9lChoBkc/8ZgWrOqvNmgHSxRoCEdAsitAnXumanV9lChoBkdAf7fs1sLv1GgHTegDaAhHQLItfuAZsKt1fZQoaAZHP/M4Ju2qkuZoB0sUaAhHQLItwiKziS91fZQoaAZHQIAXJsZYPoVoB03oA2gIR0CyLqHueBhAdX2UKGgGR0B9Yzi704BFaAdN6ANoCEdAsi6sOwxFiXV9lChoBkdAEoqur6tT1mgHSx5oCEdAsi7mfNA1N3V9lChoBkdAez2biZOSGWgHTegDaAhHQLIywpX6qKh1fZQoaAZHQIILj5wfhddoB03oA2gIR0CyNPx6rvLHdX2UKGgGR0B6h3HKfWc0aAdN6ANoCEdAsjWwhePaMHV9lChoBkdAgJbch1Tzd2gHTegDaAhHQLI17LWqcVh1fZQoaAZHQBw1q33Hq/xoB0snaAhHQLI2MBXjlxR1fZQoaAZHQCCrELpiZv1oB0skaAhHQLI2ar/82rJ1fZQoaAZHP+iyAQQL/jtoB0sdaAhHQLI2mbZOBUd1fZQoaAZHQBBlVo6CDmNoB0skaAhHQLI21hKUVzp1fZQoaAZHQBnUUO/cnE5oB0sfaAhHQLI3C8/D+BJ1fZQoaAZHQH/5+Mhouf5oB03oA2gIR0CyOhEGJN0vdX2UKGgGR0B0jGz/p+tsaAdN6ANoCEdAsjyGskpqh3V9lChoBkdAgO3wla8pTmgHTegDaAhHQLI9iifQKKJ1fZQoaAZHP/Ss1KoQ4CJoB0sXaAhHQLI9uAqur6t1fZQoaAZHQCNyB3A2ycFoB0soaAhHQLI+HTkyULV1fZQoaAZHP+OU7CBPKuBoB0sfaAhHQLI+Z2m51/51fZQoaAZHv/FEq2BreqJoB0sZaAhHQLI+nAxSHdp1fZQoaAZHP8zrkbPyCnRoB0sYaAhHQLI+zWyTpxF1fZQoaAZHQDHDilzltCRoB0s5aAhHQLI/RvMKTjh1fZQoaAZHQHtQhIvrWy1oB03oA2gIR0CyP1PRzBAOdX2UKGgGRz+QztTkyULVaAdLGmgIR0CyP4zxTbWVdX2UKGgGR0A3ABSk0rLAaAdLQ2gIR0CyP+eEdvKmdX2UKGgGR0AgAcfeUILPaAdLLWgIR0CyP/2LUCq7dX2UKGgGR0AaWxoqTbFkaAdLJWgIR0CyQDBUaQ3hdX2UKGgGR0AWN+/gzguRaAdLIWgIR0CyQDmoNutPdX2UKGgGR0AZ0rAgxJumaAdLI2gIR0CyQHKIN3GGdX2UKGgGR0Ai8tCiRGMGaAdLKmgIR0CyQHc89wFUdX2UKGgGRz/0UeMhouf3aAdLF2gIR0CyQJeejEehdX2UKGgGR7/UloDgZTAGaAdLF2gIR0CyQJxE8aGYdX2UKGgGR0CDksFrVOKwaAdN6ANoCEdAskIkrjHXE3V9lChoBkdADSwGGEf1YmgHSxtoCEdAskJQKD0163V9lChoBkdAGaIUahpQDWgHSyJoCEdAskKItdzGP3V9lChoBkdAgLZguqWC3GgHTegDaAhHQLJENBmPHT91fZQoaAZHP+mORT0g8r9oB0sdaAhHQLJEYseGO+91fZQoaAZHQCJPrdFfAsVoB0sqaAhHQLJEv0mtyPx1fZQoaAZHP+ASdvsJIDpoB0sUaAhHQLJE5KaXrt51fZQoaAZHP+/QzDXOGCZoB0sWaAhHQLJFDyon8bd1fZQoaAZHP/Z+pOvdM0xoB0sUaAhHQLJFOHf/FR51fZQoaAZHQHuoR99c8kloB02fAmgIR0CyRVeSGJvYdX2UKGgGRz/80jC53C9AaAdLGmgIR0CyRY/AXVLBdX2UKGgGR0CCO/1oxpL3aAdN6ANoCEdAskfxooNNJ3V9lChoBkc/7Q9zOoo/imgHSxRoCEdAskghyBClanV9lChoBke/+Mi+tbLU1GgHSxpoCEdAskhZclgMMXV9lChoBkc/0DmOlwcYImgHSxRoCEdAskiH1VYISnV9lChoBkc/4bi++M6zV2gHSxRoCEdAskiu8J2MbXV9lChoBkc//Qpz90ihWmgHSxloCEdAskjlTho/RnV9lChoBkc/3JiVjZtelmgHSxVoCEdAskkRb9qDb3V9lChoBke/8ja9K28Zk2gHSx5oCEdAskllkc0cfnV9lChoBkdADIvf0mMOw2gHSxloCEdAskmgMoc7yXV9lChoBkdAEZ7Qswtap2gHSxtoCEdAsknSzByjpXV9lChoBkdAIJzByjpLVWgHSyZoCEdAskoegi/wiXV9lChoBkdAgM9VmapgkWgHTegDaAhHQLJKdQ+EAYJ1fZQoaAZHP+onx8UmD15oB0sUaAhHQLJKpDGLk0d1fZQoaAZHQIFYxFkQPI5oB03oA2gIR0CyTWdkOI69dX2UKGgGR0CCwS2BJ7LMaAdN6ANoCEdAsk294keIVXV9lChoBkc/8HSOR1X/52gHSxloCEdAsk3+ozeoDXV9lChoBkdAeGx27FsHjmgHTegDaAhHQLJSW8IzFdd1fZQoaAZHQHlUQQlKK51oB03oA2gIR0CyUwRVQyh0dX2UKGgGR0B8Y/crRSgoaAdN6ANoCEdAslV+phnanXV9lChoBkdAf0mifxtpEmgHTegDaAhHQLJV8Vk+X7d1fZQoaAZHP+eQOFxn3+NoB0sVaAhHQLJWEu3+dbx1fZQoaAZHQH58R2GIsRRoB03oA2gIR0CyWeZrxiG4dX2UKGgGRz/lLgXMyJsPaAdLHGgIR0CyWh44ACGOdX2UKGgGRz/oiCBf8dgfaAdLFmgIR0CyWkRR64UfdX2UKGgGR0CACfrs0HhTaAdN6ANoCEdAslpQdkrf+HV9lChoBkdAe5OjFyaNM2gHTegDaAhHQLJclm03OwB1fZQoaAZHQIANxGUfPopoB03oA2gIR0CyXSdG/etTdX2UKGgGR0B9l9vl2eQNaAdN6ANoCEdAsmEr1tfoinV9lChoBkdAgJRInrpqymgHTegDaAhHQLJhOXiR4hV1fZQoaAZHQBzTasZHd45oB0siaAhHQLJhaSuQp4N1fZQoaAZHP+ggM+eOGTNoB0sVaAhHQLJhi7Qb+991fZQoaAZHQBe934bjtHBoB0siaAhHQLJhw114gRt1fZQoaAZHQH9/fqHGjsVoB03oA2gIR0CyY6pp8F6idX2UKGgGRz/w8D4gzP8iaAdLFGgIR0CyY9+4gA6udX2UKGgGR0CAsY6CDmKZaAdN6ANoCEdAsmSl/J/5L3V9lChoBkdADwaBqbjLjmgHSx9oCEdAsmUBgc94eXV9lChoBkdAf43nWrfce2gHTegDaAhHQLJorGH58Bx1fZQoaAZHQIAcjLZBcA1oB03oA2gIR0CyaUihWYF8dX2UKGgGRz/SD3/Pw/gSaAdLFGgIR0CyaWwY+B6KdX2UKGgGR0CAAIDNhVlxaAdN6ANoCEdAsmvZr9ETg3V9lChoBkc/hKIznA6+4GgHSxxoCEdAsmwxH+ZPVXV9lChoBkdADYdZJTVDr2gHSx1oCEdAsmx/DwYtQXV9lChoBkdAeNOUaya/h2gHTegDaAhHQLJs3WyTpxF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1043751b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc104375240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1043752d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc104375360>", "_build": "<function ActorCriticPolicy._build at 0x7fc1043753f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc104375480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc104375510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1043755a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc104375630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1043756c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc104375750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1043757e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc10436e6c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686736479252132463, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJfqkT9vTMK/4rRDvkfl5z/YMwLAbnwePqytSz3f0kO/PuQUvfuxjL9b1/k/cFjyPg6dpr+kr0nA8/KovmauUT8jtTO/cQUOwClK8TzuCoE/jcJevySnJL+n5Ry/nMoowFSPcT8TA/O/TagJP9sZpb/OF5E/x3Cpv3w+fj15p+o/Mzknv9J/mz/phgq/CoJmv1j8Hj7Dfgo/scfzOniaEUDU3tO+71L9Pq35FT5vwTy+w/BGP1JzS7/Nkmu/6KFfviP/Xb8MnPg9kojKP8A8Jr/Tpoe/UNcGP02oCT/yeEY/+BQ4PnmTO7+YdQY/5XScP5g/A7+9hv8+XLfVvoQviD3p4iM/A5fKPm//dT16S3A+p21Rv/uhbb9eHp89qgUUvx+LQT9yA1G/oLsMv8AcjT7AClq/1S1Pvj7QIz4/SrS/VI9xP1DXBj9NqAk/2xmlvxRs4D4CKZC+eeYkPwheQz+jtkG/XrpiPrY/AL+PfbU+fPgHv3oibz4T7QY+f+TjPijUPL/bGyS/CccyvlcoxT6vZgA/kqOEvzxzbb9Q/Uc+Maxcv9S9Aj5icEI+Bjarv9Omh79Q1wY/TagJP9sZpb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB8dQg3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqvkjPAAAAADBqeW/AAAAAFFR/j0AAAAABkPiPwAAAABrxAE+AAAAANDN7j8AAAAA5b7nvQAAAADsa/W/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh+sWNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAZMYb0AAAAAv6v2vwAAAACr/A0+AAAAANKj8D8AAAAAQSh6PQAAAACiu9o/AAAAAEXDCb4AAAAAJi/8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkoB7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICrLJK9AAAAADKA/78AAAAAKNUnvQAAAADT0/Y/AAAAAEQcrjwAAAAAPh3yPwAAAABotQo+AAAAAI7P978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9lpc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfJ2mvAAAAAAz2fq/AAAAAPo4oz0AAAAArvXjPwAAAAA8wwq+AAAAAPX69z8AAAAANGG8vQAAAADSaNq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSzibpeNT+MAWyUTegDjAF0lEdArPcBftx+8XV9lChoBkdAkoYmTgVGkWgHTegDaAhHQKz5SVoHs1N1fZQoaAZHQJTOfeBQN1BoB03oA2gIR0Cs+rK6OHWSdX2UKGgGR0CV7epwCKaYaAdN6ANoCEdArQVFUhmoSHV9lChoBkdAlaRu2uxKQWgHTegDaAhHQK0Ial67dzp1fZQoaAZHQJXJXNqxkd5oB03oA2gIR0CtClyCOFQEdX2UKGgGR0CW11W1+iJwaAdN6ANoCEdArQtXvfCQ93V9lChoBkdAk4GVsDW9UWgHTegDaAhHQK0SjtvXK8t1fZQoaAZHQJOmKTV2A5JoB03oA2gIR0CtFawj+rEMdX2UKGgGR0CWdgvrnkksaAdN6ANoCEdArReoIyCWeHV9lChoBkdAlOUx8D0UXmgHTegDaAhHQK0Y04Nqgyx1fZQoaAZHQJS33xmTTv1oB03oA2gIR0CtI4/UF0PpdX2UKGgGR0CQgUJPqLTAaAdN6ANoCEdArSa3gFX7tXV9lChoBkdAlym7xy4nW2gHTegDaAhHQK0orCl7+kx1fZQoaAZHQJVt7kiliz9oB03oA2gIR0CtKaGelKsddX2UKGgGR0CWoXrE9+w1aAdN6ANoCEdArTDBiG34K3V9lChoBkdAkDPl+Vkc0mgHTegDaAhHQK0z6RigCfZ1fZQoaAZHQJkwfoQnQY1oB03oA2gIR0CtNeK1og3cdX2UKGgGR0CW4hsz2vjfaAdN6ANoCEdArTbdhoduHnV9lChoBkdAl7U+aWom5WgHTegDaAhHQK1BMKrq+rV1fZQoaAZHQJc0W9Gqgh9oB03oA2gIR0CtRRv91loUdX2UKGgGR0CaOcZvUBn0aAdN6ANoCEdArUcPJiiItXV9lChoBkdAmCcva6BiC2gHTegDaAhHQK1IA9TP0I11fZQoaAZHQJV1Aal1r7BoB03oA2gIR0CtTzQj2SMcdX2UKGgGR0CYJOE8q4H5aAdN6ANoCEdArVJkTtb9qHV9lChoBkdAmT3wvDgqE2gHTegDaAhHQK1UdQBPsRh1fZQoaAZHQJe0yNEPUa1oB03oA2gIR0CtVXb9hqj8dX2UKGgGR0CTEb8uzyBkaAdN6ANoCEdArV96ojv/i3V9lChoBkdAkO2N+gDifmgHTegDaAhHQK1j9i+cpb51fZQoaAZHQJUZtjqfOD9oB03oA2gIR0CtZexfnfVJdX2UKGgGR0CUhQ2gFotdaAdN6ANoCEdArWbhgVoHs3V9lChoBkdAkAQJ8KG+K2gHTegDaAhHQK1uBiVjZth1fZQoaAZHQJYIpTDO1OVoB03oA2gIR0CtcTFEqlP8dX2UKGgGR0CT68RzzVc2aAdN6ANoCEdArXMyhL5AQnV9lChoBkdAkenKlLvkR2gHTegDaAhHQK10MHsTnJV1fZQoaAZHQJTIiTkhib5oB03oA2gIR0CtfWRfF72MdX2UKGgGR0CW/YrRBu4xaAdN6ANoCEdArYK6/RE4N3V9lChoBkdAllcXmA9V3mgHTegDaAhHQK2GaVKPGQ11fZQoaAZHQJY96B9Tgl5oB03oA2gIR0Cth/HOKO1fdX2UKGgGR0CRWpblRxcWaAdN6ANoCEdArZDt+iJwbXV9lChoBkdAktowAlv602gHTegDaAhHQK2UA5hBqsV1fZQoaAZHQJPVxlyzXz1oB03oA2gIR0CtlfQM6RyPdX2UKGgGR0CRpX5s0pEyaAdN6ANoCEdArZbs6mwaBXV9lChoBkdAmJJtNahYeWgHTegDaAhHQK2gWadc0Lt1fZQoaAZHQJTocQNCqp9oB03oA2gIR0CtpO7jkuHvdX2UKGgGR0CZYsFglWwNaAdN6ANoCEdArabcXHim23V9lChoBkdAlylBVU+9rWgHTegDaAhHQK2n1SOR1YB1fZQoaAZHQJcIwNAkcCJoB03oA2gIR0CtrwT+m3vydX2UKGgGR0CZrtrCWNWEaAdN6ANoCEdArbIRsCT2WnV9lChoBkdAl2fsjiXIEWgHTegDaAhHQK20DugHu7Z1fZQoaAZHQIbIBBsyi25oB03oA2gIR0CttQr26ClKdX2UKGgGR0CVhB0yP+4taAdN6ANoCEdArb3w1P3ztnV9lChoBkdAk6tUyP+4smgHTegDaAhHQK3CumO2iL51fZQoaAZHQJfi2iAUcn5oB03oA2gIR0CtxSXai9IxdX2UKGgGR0CWln+evpyIaAdN6ANoCEdArcYh1s+FDnV9lChoBkdAmHHgztTkyWgHTegDaAhHQK3NOcGTs6d1fZQoaAZHQJOgYAZKnNxoB03oA2gIR0Ct0FYDTz/ZdX2UKGgGR0CSWwJTER8MaAdN6ANoCEdArdJLjin5z3V9lChoBkdAl9vbcfvF32gHTegDaAhHQK3TRp35eqt1fZQoaAZHQJHC+XfIjnpoB03oA2gIR0Ct26IX0oSddX2UKGgGR0CWoZ0yxiXqaAdN6ANoCEdAreBr26ClJ3V9lChoBkdAlilNZaFEiWgHTegDaAhHQK3jjnbqQil1fZQoaAZHQJZowFINEw5oB03oA2gIR0Ct5IUMG5c1dX2UKGgGR0CTMilb/wRXaAdN6ANoCEdArevHTVlPJ3V9lChoBkdAldI4K+i8F2gHTegDaAhHQK3u3003wTd1fZQoaAZHQJSLrEZR8+loB03oA2gIR0Ct8N0xmCiAdX2UKGgGR0CSCwwJPZZkaAdN6ANoCEdArfHcJOWSlnV9lChoBkdAmJoyOvMbFWgHTegDaAhHQK3505MlC1J1fZQoaAZHQJbwp3gUDdRoB03oA2gIR0Ct/nooE0SAdX2UKGgGR0CXjCkZrHlwaAdN6ANoCEdArgGLmKZUk3V9lChoBkdAlPBke2d/a2gHTegDaAhHQK4DAuyNXHR1fZQoaAZHQJbstPXTVlRoB03oA2gIR0CuCjK0dBBzdX2UKGgGR0CXrfHQhOgyaAdN6ANoCEdArg0/nIQvpXV9lChoBkdAl5y0SRKYiWgHTegDaAhHQK4PMn/DLr51fZQoaAZHQJRMJZ1V5rxoB03oA2gIR0CuEC0GeMAFdX2UKGgGR0CY4YZQYUFjaAdN6ANoCEdArheF78ejmHV9lChoBkdAk2oPRRdhRmgHTegDaAhHQK4b+2Yv38J1fZQoaAZHQJOcMQYk3S9oB03oA2gIR0CuHxKjSG8FdX2UKGgGR0CSpOQjD8+BaAdN6ANoCEdAriCbTc6/7HV9lChoBkdAmDn8figkC2gHTegDaAhHQK4of+DOC5F1fZQoaAZHQJTHeUD+zdFoB03oA2gIR0CuK5nDaXa8dX2UKGgGR0CTQpRf4REnaAdN6ANoCEdAri2MrZrYXnV9lChoBkdAkFA4ZVGTcWgHTegDaAhHQK4uhM36yjZ1fZQoaAZHQJWXzE9+w1RoB03oA2gIR0CuNa35eqrBdX2UKGgGR0CZtQma6STyaAdN6ANoCEdArjm2evpyInV9lChoBkdAle9oTPBzm2gHTegDaAhHQK48l+8XenB1fZQoaAZHQJh6ZHavicZoB03oA2gIR0CuPhfOUt7KdX2UKGgGR0CYH357w8W9aAdN6ANoCEdArkZ/0K7ZnXV9lChoBkdAlwdhoqTbFmgHTegDaAhHQK5JqdMCcPR1fZQoaAZHQJWoeslsxfxoB03oA2gIR0CuS5RWLgn/dX2UKGgGR0CU6BOqNp/PaAdN6ANoCEdArkyJBJI1+HV9lChoBkdAlYqJ2ECeVmgHTegDaAhHQK5TtHaN+9d1fZQoaAZHQJdB7oq0+khoB03oA2gIR0CuVz3Adn01dX2UKGgGR0CXUX5Etuk2aAdN6ANoCEdArloLOJLuhXV9lChoBkdAmQlVvMr3CmgHTegDaAhHQK5biEcKgI11fZQoaAZHQJmk1Y3eenRoB03oA2gIR0CuZLuQIUrTdX2UKGgGR0CYv6evZAY6aAdN6ANoCEdArmfBR8+ianV9lChoBkdAmC5+jh1klWgHTegDaAhHQK5pq/HHWBl1fZQoaAZHQJrIrV5KODJoB03oA2gIR0CuaqCzsyBTdX2UKGgGR0CYbf0PH1e0aAdN6ANoCEdArnG5I8QqZ3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 441.3660414344631, "std_reward": 163.32443126376089, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-14T03:16:19.636597"}
 
1
+ {"mean_reward": 1361.2780501746456, "std_reward": 214.96179778691203, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-14T11:00:52.172693"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:004f739146a197550fd869b08364718a44265cfc69369354bc4e7d07a5ef1972
3
- size 2170
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ab11d460fdfd14faecafcdcce33d6e0b9f831e4f58c449412b204e5b560aeaf
3
+ size 2176