--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 tags: - axolotl - generated_from_trainer model-index: - name: c72cb2ac-6d63-41bd-a811-02f9e7386b33 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1d524149952d83ea_train_data.json ds_type: json format: custom path: /workspace/input_data/1d524149952d83ea_train_data.json type: field_instruction: caption field_output: desciption format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: mamung/c72cb2ac-6d63-41bd-a811-02f9e7386b33 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.00015 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/1d524149952d83ea_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: eddysang wandb_mode: online wandb_name: d0970467-94ee-4502-ac62-65c8c0b7ba0c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d0970467-94ee-4502-ac62-65c8c0b7ba0c warmup_steps: 20 weight_decay: 0.01 xformers_attention: false ```

# c72cb2ac-6d63-41bd-a811-02f9e7386b33 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.3403 | | 2.3261 | 0.0009 | 9 | 2.2603 | | 2.0424 | 0.0018 | 18 | 1.9761 | | 1.8412 | 0.0028 | 27 | 1.8079 | | 1.7556 | 0.0037 | 36 | 1.7272 | | 1.6644 | 0.0046 | 45 | 1.6754 | | 1.6583 | 0.0055 | 54 | 1.6408 | | 1.6313 | 0.0064 | 63 | 1.6158 | | 1.6007 | 0.0074 | 72 | 1.6000 | | 1.5806 | 0.0083 | 81 | 1.5913 | | 1.5908 | 0.0092 | 90 | 1.5868 | | 1.562 | 0.0101 | 99 | 1.5859 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1