import gc import os from typing import TypeAlias import torch from PIL.Image import Image from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, AutoencoderTiny from huggingface_hub.constants import HF_HUB_CACHE from pipelines.models import TextToImageRequest from torch import Generator from torchao.quantization import quantize_, int8_weight_only from transformers import T5EncoderModel, CLIPTextModel, logging Pipeline: TypeAlias = FluxPipeline torch.backends.cudnn.benchmark = True torch.backends.cudnn.benchmark = True torch._inductor.config.conv_1x1_as_mm = True torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.epilogue_fusion = False torch._inductor.config.coordinate_descent_check_all_directions = True os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" CHECKPOINT = "manbeast3b/Flux.1.schnell-quant2" REVISION = "44eb293715147878512da10bf3bc47cd14ec8c55" TinyVAE = "madebyollin/taef1" TinyVAE_REV = "2d552378e58c9c94201075708d7de4e1163b2689" def load_pipeline() -> Pipeline: path = os.path.join(HF_HUB_CACHE, "models--manbeast3b--Flux.1.schnell-quant2/snapshots/44eb293715147878512da10bf3bc47cd14ec8c55/transformer") transformer = FluxTransformer2DModel.from_pretrained( path, use_safetensors=False, local_files_only=True, torch_dtype=torch.bfloat16) vae = AutoencoderTiny.from_pretrained( TinyVAE, revision=TinyVAE_REV, local_files_only=True, torch_dtype=torch.bfloat16) vae.encoder.load_state_dict(torch.load("encoder.pth"), strict=False) vae.decoder.load_state_dict(torch.load("decoder.pth"), strict=False) pipeline = FluxPipeline.from_pretrained( CHECKPOINT, revision=REVISION, transformer=transformer, vae=vae, local_files_only=True, torch_dtype=torch.bfloat16, ).to("cuda") pipeline.to(memory_format=torch.channels_last) quantize_(pipeline.vae, int8_weight_only()) pipeline.vae = torch.compile(pipeline.vae, mode="max-autotune", fullgraph=True) with torch.inference_mode(): for _ in range(2): pipeline("cat", num_inference_steps=4) return pipeline @torch.inference_mode() def infer(request: TextToImageRequest, pipeline: Pipeline, generator: torch.Generator) -> Image: return pipeline( request.prompt, generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, ).images[0]