{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e27c2c13a30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e27c2c13ac0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e27c2c13b50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e27c2c13be0>", "_build": "<function ActorCriticPolicy._build at 0x7e27c2c13c70>", "forward": "<function ActorCriticPolicy.forward at 0x7e27c2c13d00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e27c2c13d90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e27c2c13e20>", "_predict": "<function ActorCriticPolicy._predict at 0x7e27c2c13eb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e27c2c13f40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e27c2c20040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e27c2c200d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e27c3618fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1725878037539149336, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpAbz205LY+5fIQPTQFmL7qWAG94z7dPAAAAAAAAAAA4KoZvgmvnz8Whgu/9a/evh67VL62AI2+AAAAAAAAAAANzhy+BeXyPp5Tjz4JUa6+bEvzOyIrzz0AAAAAAAAAACBZJr7/Z0I/flxzPN0wsL7zgQ6+asWSPAAAAAAAAAAAmsuSPSPjOT8+3ws9UXWwvu8MiD34hIy8AAAAAAAAAACaGek6SLuGuqeZl7oAfZO1n3CuuiKFsDkAAIA/AACAP4DUuj1SAPW5utUiuitm3rSKWMi779pCOQAAgD8AAAAAMzZCvTC4RT/KBZm9pKa5vhOIUL1a2VK8AAAAAAAAAADaw4A9e26Muq66YLXkHHSwsLQ+OxDTkzQAAIA/AACAPxqfrT0kC0k8c2zXvIAhdb7jzWA9OOJevAAAAAAAAAAAphHyPRSis7rTUOw3Y2rItEteu7s2zhG3AACAPwAAgD+zFgY99mwGukKKyLoa+ze1QFfkOvsk8DkAAIA/AACAPzOrS73KIYQ+gPiaPHmCiL78qsm8i4KAvQAAAAAAAAAAMwWwPel1pT5C2QS+/+thvqfWQ73Ou2m9AAAAAAAAAADm4J091zUYPHFdzL0DYTO+1LY3PDlfBLsAAAAAAAAAAGbOzT3D6R66w6UguSLT5rPNIIy4MqI5OAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHD0TArQPZuMAWyUTRgBjAF0lEdArhf9MM7U5XV9lChoBkdAbq/VbzK9wmgHTSYBaAhHQK4YcHgxagV1fZQoaAZHQFU5mG/N7jVoB0vKaAhHQK4YpB3Roh91fZQoaAZHQHMnrOeJ53VoB00wAWgIR0CuGL//NqxkdX2UKGgGR0BufZGax5cDaAdNMgFoCEdArhqr7Q9idHV9lChoBkdAcH+jzZpSJmgHS/doCEdArhrG5DqnnHV9lChoBkdAb5+1ndweeWgHTV8BaAhHQK4a97jT8YR1fZQoaAZHQHDjwuEmICVoB00mAWgIR0CuG9yYw7DEdX2UKGgGR0BvvbuBtk4FaAdNjgFoCEdArhv6nzg/DHV9lChoBkdAcYoUDdP+GWgHTV8BaAhHQK4cCILw4Kh1fZQoaAZHQHBZyYw7DEZoB01hAWgIR0CuHIUutfXxdX2UKGgGR0BwEAsDnvDxaAdL82gIR0CuHL4jKPn0dX2UKGgGR0Bx7Dvb48EFaAdNIwFoCEdArhzTb+Lm63V9lChoBkdAcQFfZmI0qGgHTSEBaAhHQK4dAqp97Wx1fZQoaAZHQHJu+ktVaOhoB02DAWgIR0CuHWU4rBj4dX2UKGgGR0BQLZlJ6IFeaAdLqGgIR0CuHYjcM3IddX2UKGgGR0BxBwajvd/KaAdNXwFoCEdArh2M5S3sonV9lChoBkdAcMK5LRKHwmgHTRIBaAhHQK4dsam4y451fZQoaAZHQHKYUxREWqNoB00aAWgIR0CuHd9l/YrbdX2UKGgGR0BzQiPXCj1xaAdNMgFoCEdArh35FCswL3V9lChoBkdAcwDzQeFL4GgHTQYBaAhHQK4etVinYQJ1fZQoaAZHQHEIAPAfuCxoB00JAWgIR0CuHv29DhLodX2UKGgGR0BQwWF8G9pRaAdLsWgIR0CuHzS5iExqdX2UKGgGR0Bsuc2BJ7LMaAdNCgFoCEdArh+6+vhZQ3V9lChoBkdAcmQpPRArx2gHTR8BaAhHQK4gK7VawEB1fZQoaAZHQHLNZhvze41oB00lAWgIR0CuIFMQ/X5GdX2UKGgGR0BxNTj0cwQEaAdNGQFoCEdAriCh0+1SfnV9lChoBkdAcgjio86mwmgHTQUBaAhHQK4goYWLxZx1fZQoaAZHQHDWdK28Zk1oB0v/aAhHQK4hQuwosqd1fZQoaAZHQGwY7rLQokRoB02YA2gIR0CuIVay0KJEdX2UKGgGR0BzyU+0PYnOaAdNIQFoCEdAriGjRa5f+nV9lChoBkdAcMhHlfZ26mgHS/poCEdAriGqYoiLVHV9lChoBkdAcMCObAk9lmgHTRkBaAhHQK4iB6lchTx1fZQoaAZHQHAMktyxRl9oB01DAWgIR0CuInN3GGVSdX2UKGgGR0Bs4ypR4yGjaAdNHQFoCEdAriMOvOhTO3V9lChoBkdAcP25H3Dej2gHTT0BaAhHQK4j9s1KoQ51fZQoaAZHQHJRddqtYCBoB03rAWgIR0CuJIwM6RyPdX2UKGgGR0Bvf/2saKk3aAdL92gIR0CuJKFM7EHddX2UKGgGR0Bupl+TeO4oaAdNFAFoCEdAriU5ujynUHV9lChoBkdAcEH8fV7QcGgHTSsBaAhHQK4lTcCYCyR1fZQoaAZHQHJPFJg9eQdoB031AWgIR0CuJYQJPZZkdX2UKGgGR0Bw1Pwz+FURaAdNXwFoCEdAriWe+bmU4nV9lChoBkdAcqkj+717IGgHS/doCEdAriWfZK3/gnV9lChoBkdAcCeqptJnQWgHS/5oCEdAriWm7lJYknV9lChoBkdAb+uasIVuaWgHTYQBaAhHQK4lrt/nW8R1fZQoaAZHQHDc0/0NBnloB01pAWgIR0CuL2SKekHldX2UKGgGR0BxPl6v7m+1aAdNAQFoCEdAri+zujRD1HV9lChoBkdAbz7kCFK02WgHTR0BaAhHQK4vzeu3c591fZQoaAZHQHHJKK+BYmtoB00oAWgIR0CuL/Ko60Y1dX2UKGgGR0BuJ0LKFIuoaAdNCwFoCEdArjBOu1WsBHV9lChoBkdAcWdaAnUlRmgHTQoBaAhHQK4y+3kPtlZ1fZQoaAZHQHEsuKXOW0JoB002AWgIR0CuMzuA7PpqdX2UKGgGR0Bs0FL8JlasaAdL92gIR0CuM0LxRVIadX2UKGgGR0BwDzZYgaFVaAdNIwFoCEdArjONYyO7x3V9lChoBkdAchExffGdZ2gHTXoBaAhHQK4zsbBoEjh1fZQoaAZHQHOsjTnaFmFoB0v+aAhHQK4z3l2eQMh1fZQoaAZHQHEnJ5VwPy1oB0v/aAhHQK4z8h8pkPN1fZQoaAZHQHLu+xfOUt9oB00KAWgIR0CuM/pwjt5VdX2UKGgGR0BwvtZmqYJFaAdNKQFoCEdArjSSKk2xZHV9lChoBkdAbQ1sguAZsWgHS/hoCEdArjSxp+MIeHV9lChoBkdAbsJxNqQA/GgHTUgBaAhHQK40yfp2U0N1fZQoaAZHQHA/b8iwB5poB008AWgIR0CuNNZQ53kgdX2UKGgGR0BviM1yeZogaAdNJgFoCEdArjUI3PzFuXV9lChoBkdAccSdFfAsTWgHTQkBaAhHQK41DWGyon91fZQoaAZHQHJ+mAPNFBpoB00MAWgIR0CuNVg8r7O3dX2UKGgGR0BxR0XJo0yhaAdNPgFoCEdArjV4I8hcJXV9lChoBkdAVGGF0xM362gHS7doCEdArjYpS9/SY3V9lChoBkdAbybjXFtKqWgHTQ4BaAhHQK43FVtoBaN1fZQoaAZHQHA5hmCiAUdoB00dAWgIR0CuN4XPqs2fdX2UKGgGR0BwwTF0gbIcaAdNBAFoCEdArjeQHJLdvnV9lChoBkdAcjM3ztkWh2gHTQUBaAhHQK43qnivPkd1fZQoaAZHQHFtS6QNkOJoB00iAWgIR0CuN9D9XLeRdX2UKGgGR0BwpsI2OyVwaAdNEAFoCEdArjfg5HVf/nV9lChoBkdAbydhz/6wdWgHTVEBaAhHQK44bR2KVIJ1fZQoaAZHQHOTvci4axZoB00DAWgIR0CuOG/wZwXJdX2UKGgGR0Bx8XKV6eGxaAdNEgFoCEdArjiK7EpAlnV9lChoBkdAcXdDqGDcumgHTRUBaAhHQK44x38GcF11fZQoaAZHQHA6cKb8WKxoB00fAWgIR0CuOPl0PpY+dX2UKGgGR0BwJtsZYPoWaAdNNwFoCEdArjmNTtLL6nV9lChoBkdAbgR68g6ltWgHTS4BaAhHQK453uc+aBt1fZQoaAZHQHL0njp9qlBoB00sAWgIR0CuOgN0eU6gdX2UKGgGR0ByW0/7iyY5aAdNYgFoCEdArjo7mKZUk3V9lChoBkdAcJw72tdRi2gHTRUBaAhHQK46ebjLjgh1fZQoaAZHQEfa/X5FgD1oB0u+aAhHQK47NREWqLl1fZQoaAZHQHFMDNUwSJ1oB00AAWgIR0CuO8tMoMKDdX2UKGgGR0BFhxYaHbh4aAdLvmgIR0CuO965wwTNdX2UKGgGR0BxSp4jbBXTaAdNFwFoCEdArjve9pRGdHV9lChoBkdAcEpClJpWWGgHTTQBaAhHQK4762tMfzV1fZQoaAZHQHHoOPeYUnJoB00fAWgIR0CuO/Z2hZhbdX2UKGgGR0BuUsi0OVgQaAdNCQFoCEdArjyFHjIaLnV9lChoBkdAcEKRwqAjIWgHTQwBaAhHQK481bmEGqx1fZQoaAZHQG7yjy4FzMloB01YAWgIR0CuPRK7AckudX2UKGgGR0BwlycPOIIoaAdNSAFoCEdArj1cBOpKjHV9lChoBkdAbo6W0JF9a2gHTQIBaAhHQK495+kP+XJ1fZQoaAZHQHMNdJJ5E+hoB00mAWgIR0CuPgDlHSWrdX2UKGgGR0BwpjhwVCXyaAdNHQFoCEdArj4loDgZTHV9lChoBkdAcd4BTGYKIGgHTRgBaAhHQK4+q/1QIld1fZQoaAZHQEmf/XoTwlVoB0vBaAhHQK4+yVafSQZ1fZQoaAZHQHOhszyjHn5oB00xAWgIR0CuPskjgQ6IdX2UKGgGR0BuhOavzOHGaAdNFgFoCEdArj9eSt/4I3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |