manibt1993
commited on
Commit
•
47fc0f6
1
Parent(s):
0d5651d
Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: dslim/distilbert-NER
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- transformer_dataset_ner
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: huner_ncbi_disease_dslim
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: transformer_dataset_ner
|
21 |
+
type: transformer_dataset_ner
|
22 |
+
config: ncbi_disease
|
23 |
+
split: validation
|
24 |
+
args: ncbi_disease
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.8325183374083129
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.8653113087674714
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.8485981308411215
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9849891909996041
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# huner_ncbi_disease_dslim
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the transformer_dataset_ner dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1484
|
48 |
+
- Precision: 0.8325
|
49 |
+
- Recall: 0.8653
|
50 |
+
- F1: 0.8486
|
51 |
+
- Accuracy: 0.9850
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 20
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.1243 | 1.0 | 667 | 0.0669 | 0.7013 | 0.8412 | 0.7649 | 0.9787 |
|
83 |
+
| 0.0512 | 2.0 | 1334 | 0.0656 | 0.7825 | 0.8412 | 0.8108 | 0.9818 |
|
84 |
+
| 0.0221 | 3.0 | 2001 | 0.0744 | 0.7908 | 0.8501 | 0.8194 | 0.9822 |
|
85 |
+
| 0.0107 | 4.0 | 2668 | 0.1022 | 0.7940 | 0.8475 | 0.8199 | 0.9808 |
|
86 |
+
| 0.008 | 5.0 | 3335 | 0.1055 | 0.7818 | 0.8602 | 0.8191 | 0.9816 |
|
87 |
+
| 0.0057 | 6.0 | 4002 | 0.1173 | 0.8067 | 0.8590 | 0.832 | 0.9830 |
|
88 |
+
| 0.0027 | 7.0 | 4669 | 0.1188 | 0.8188 | 0.8501 | 0.8342 | 0.9834 |
|
89 |
+
| 0.0022 | 8.0 | 5336 | 0.1229 | 0.8080 | 0.8450 | 0.8261 | 0.9826 |
|
90 |
+
| 0.0019 | 9.0 | 6003 | 0.1341 | 0.8007 | 0.8526 | 0.8258 | 0.9834 |
|
91 |
+
| 0.0019 | 10.0 | 6670 | 0.1360 | 0.8045 | 0.8628 | 0.8326 | 0.9822 |
|
92 |
+
| 0.0011 | 11.0 | 7337 | 0.1376 | 0.8163 | 0.8640 | 0.8395 | 0.9838 |
|
93 |
+
| 0.0008 | 12.0 | 8004 | 0.1447 | 0.8007 | 0.8577 | 0.8282 | 0.9833 |
|
94 |
+
| 0.0006 | 13.0 | 8671 | 0.1381 | 0.8139 | 0.8615 | 0.8370 | 0.9839 |
|
95 |
+
| 0.0005 | 14.0 | 9338 | 0.1398 | 0.8297 | 0.8666 | 0.8477 | 0.9843 |
|
96 |
+
| 0.0004 | 15.0 | 10005 | 0.1404 | 0.8232 | 0.8640 | 0.8431 | 0.9842 |
|
97 |
+
| 0.0003 | 16.0 | 10672 | 0.1486 | 0.8329 | 0.8551 | 0.8439 | 0.9838 |
|
98 |
+
| 0.0 | 17.0 | 11339 | 0.1469 | 0.8114 | 0.8691 | 0.8393 | 0.9837 |
|
99 |
+
| 0.0002 | 18.0 | 12006 | 0.1500 | 0.8297 | 0.8602 | 0.8447 | 0.9843 |
|
100 |
+
| 0.0001 | 19.0 | 12673 | 0.1489 | 0.8315 | 0.8653 | 0.8481 | 0.9849 |
|
101 |
+
| 0.0 | 20.0 | 13340 | 0.1484 | 0.8325 | 0.8653 | 0.8486 | 0.9850 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.35.2
|
107 |
+
- Pytorch 2.1.0+cu121
|
108 |
+
- Datasets 2.16.1
|
109 |
+
- Tokenizers 0.15.1
|
runs/Feb06_05-04-58_0fc676717a2f/events.out.tfevents.1707195906.0fc676717a2f.1788.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c6d0d9eeeaa84f0f9738cf6bdaa507ba847422c58eaeccb21a87ba10937e7d3
|
3 |
+
size 18196
|