--- license: apache-2.0 base_model: dslim/distilbert-NER tags: - generated_from_trainer datasets: - transformer_dataset_ner metrics: - precision - recall - f1 - accuracy model-index: - name: huner_ncbi_disease_dslim results: - task: name: Token Classification type: token-classification dataset: name: transformer_dataset_ner type: transformer_dataset_ner config: ncbi_disease split: validation args: ncbi_disease metrics: - name: Precision type: precision value: 0.8325183374083129 - name: Recall type: recall value: 0.8653113087674714 - name: F1 type: f1 value: 0.8485981308411215 - name: Accuracy type: accuracy value: 0.9849891909996041 --- # huner_ncbi_disease_dslim This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the transformer_dataset_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.1484 - Precision: 0.8325 - Recall: 0.8653 - F1: 0.8486 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1243 | 1.0 | 667 | 0.0669 | 0.7013 | 0.8412 | 0.7649 | 0.9787 | | 0.0512 | 2.0 | 1334 | 0.0656 | 0.7825 | 0.8412 | 0.8108 | 0.9818 | | 0.0221 | 3.0 | 2001 | 0.0744 | 0.7908 | 0.8501 | 0.8194 | 0.9822 | | 0.0107 | 4.0 | 2668 | 0.1022 | 0.7940 | 0.8475 | 0.8199 | 0.9808 | | 0.008 | 5.0 | 3335 | 0.1055 | 0.7818 | 0.8602 | 0.8191 | 0.9816 | | 0.0057 | 6.0 | 4002 | 0.1173 | 0.8067 | 0.8590 | 0.832 | 0.9830 | | 0.0027 | 7.0 | 4669 | 0.1188 | 0.8188 | 0.8501 | 0.8342 | 0.9834 | | 0.0022 | 8.0 | 5336 | 0.1229 | 0.8080 | 0.8450 | 0.8261 | 0.9826 | | 0.0019 | 9.0 | 6003 | 0.1341 | 0.8007 | 0.8526 | 0.8258 | 0.9834 | | 0.0019 | 10.0 | 6670 | 0.1360 | 0.8045 | 0.8628 | 0.8326 | 0.9822 | | 0.0011 | 11.0 | 7337 | 0.1376 | 0.8163 | 0.8640 | 0.8395 | 0.9838 | | 0.0008 | 12.0 | 8004 | 0.1447 | 0.8007 | 0.8577 | 0.8282 | 0.9833 | | 0.0006 | 13.0 | 8671 | 0.1381 | 0.8139 | 0.8615 | 0.8370 | 0.9839 | | 0.0005 | 14.0 | 9338 | 0.1398 | 0.8297 | 0.8666 | 0.8477 | 0.9843 | | 0.0004 | 15.0 | 10005 | 0.1404 | 0.8232 | 0.8640 | 0.8431 | 0.9842 | | 0.0003 | 16.0 | 10672 | 0.1486 | 0.8329 | 0.8551 | 0.8439 | 0.9838 | | 0.0 | 17.0 | 11339 | 0.1469 | 0.8114 | 0.8691 | 0.8393 | 0.9837 | | 0.0002 | 18.0 | 12006 | 0.1500 | 0.8297 | 0.8602 | 0.8447 | 0.9843 | | 0.0001 | 19.0 | 12673 | 0.1489 | 0.8315 | 0.8653 | 0.8481 | 0.9849 | | 0.0 | 20.0 | 13340 | 0.1484 | 0.8325 | 0.8653 | 0.8486 | 0.9850 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1