mann2107 commited on
Commit
14f2dfd
1 Parent(s): 229ea2c

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget: []
13
+ inference: true
14
+ ---
15
+
16
+ # SetFit with sentence-transformers/all-MiniLM-L6-v2
17
+
18
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
19
+
20
+ The model has been trained using an efficient few-shot learning technique that involves:
21
+
22
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
23
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
24
+
25
+ ## Model Details
26
+
27
+ ### Model Description
28
+ - **Model Type:** SetFit
29
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
30
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
31
+ - **Maximum Sequence Length:** 256 tokens
32
+ <!-- - **Number of Classes:** Unknown -->
33
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
34
+ <!-- - **Language:** Unknown -->
35
+ <!-- - **License:** Unknown -->
36
+
37
+ ### Model Sources
38
+
39
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
40
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
41
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
42
+
43
+ ## Uses
44
+
45
+ ### Direct Use for Inference
46
+
47
+ First install the SetFit library:
48
+
49
+ ```bash
50
+ pip install setfit
51
+ ```
52
+
53
+ Then you can load this model and run inference.
54
+
55
+ ```python
56
+ from setfit import SetFitModel
57
+
58
+ # Download from the 🤗 Hub
59
+ model = SetFitModel.from_pretrained("mann2107/BCMPIIRAB_MiniLM_V3")
60
+ # Run inference
61
+ preds = model("I loved the spiderman movie!")
62
+ ```
63
+
64
+ <!--
65
+ ### Downstream Use
66
+
67
+ *List how someone could finetune this model on their own dataset.*
68
+ -->
69
+
70
+ <!--
71
+ ### Out-of-Scope Use
72
+
73
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
74
+ -->
75
+
76
+ <!--
77
+ ## Bias, Risks and Limitations
78
+
79
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
80
+ -->
81
+
82
+ <!--
83
+ ### Recommendations
84
+
85
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
86
+ -->
87
+
88
+ ## Training Details
89
+
90
+ ### Framework Versions
91
+ - Python: 3.9.16
92
+ - SetFit: 1.1.0.dev0
93
+ - Sentence Transformers: 2.2.2
94
+ - Transformers: 4.21.3
95
+ - PyTorch: 1.12.1+cu116
96
+ - Datasets: 2.4.0
97
+ - Tokenizers: 0.12.1
98
+
99
+ ## Citation
100
+
101
+ ### BibTeX
102
+ ```bibtex
103
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
104
+ doi = {10.48550/ARXIV.2209.11055},
105
+ url = {https://arxiv.org/abs/2209.11055},
106
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
107
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
108
+ title = {Efficient Few-Shot Learning Without Prompts},
109
+ publisher = {arXiv},
110
+ year = {2022},
111
+ copyright = {Creative Commons Attribution 4.0 International}
112
+ }
113
+ ```
114
+
115
+ <!--
116
+ ## Glossary
117
+
118
+ *Clearly define terms in order to be accessible across audiences.*
119
+ -->
120
+
121
+ <!--
122
+ ## Model Card Authors
123
+
124
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
125
+ -->
126
+
127
+ <!--
128
+ ## Model Card Contact
129
+
130
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
131
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "results/step_5000/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.21.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c09c64681baa48d2b87d70667e5132d37e6b8cfa2a9847434f3b0de20f8b0a56
3
+ size 44127
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a83c61a291fa5f9ac3257bc04a06413a35511086fdf62ee5c9860ee054df629b
3
+ size 90890353
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_basic_tokenize": true,
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 512,
7
+ "name_or_path": "results/step_5000/",
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "special_tokens_map_file": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/special_tokens_map.json",
12
+ "strip_accents": null,
13
+ "tokenize_chinese_chars": true,
14
+ "tokenizer_class": "BertTokenizer",
15
+ "unk_token": "[UNK]"
16
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff