Para un uso sencillo del modelo utilize el siguiente codigo: ```py #! pip install transformers #! pip install torch #! pip install datasets ``` ```py from transformers import DistilBertForSequenceClassification, DistilBertTokenizer from transformers import AutoTokenizer, AutoModelForSequenceClassification from datasets import load_dataset import numpy as np import torch dataset = load_dataset("manoh2f2/songs_resampled") # Cargar el dataset en un DataFrame split_name = 'train' df_resampled = dataset[split_name].to_pandas() tokenizer = AutoTokenizer.from_pretrained("manoh2f2/recommend_songs") model = AutoModelForSequenceClassification.from_pretrained("manoh2f2/recommend_songs") # Define a prompt prompt = "I am happy" # Tokenize the prompt encoded_prompt = tokenizer(prompt, return_tensors='pt', max_length=256) # Make a prediction using the trained model with torch.no_grad(): model_output = model(**encoded_prompt) # Get the predicted emotion index predicted_emotion_index = torch.argmax(model_output.logits).item() # Map the index back to the emotion label using the DataFrame predicted_emotion_label = df_resampled['emotions'].unique()[predicted_emotion_index] # Get a song associated with the predicted emotion from the DaraFrame result = df_resampled[df_resampled['emotions'] == predicted_emotion_label] # Get the number of rows in the DataFrame num_rows = result.shape[0] #Generate a random index to select a random song from the DataFrame random_index = np.random.randint(0, num_rows) #Get the recommended song and artist recommended_song = result['song'].iloc[random_index] recommended_artist = result['artist'].iloc[random_index] #Print the results print(f"Prompt: {prompt}") print(f"Predicted Emotion: {predicted_emotion_label}") print(f"Recommended Song: {recommended_song} - {recommended_artist}") ```