File size: 13,781 Bytes
a290500 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x793a4cab0f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x793a4cab1000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x793a4cab1090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x793a4cab1120>", "_build": "<function ActorCriticPolicy._build at 0x793a4cab11b0>", "forward": "<function ActorCriticPolicy.forward at 0x793a4cab1240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x793a4cab12d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x793a4cab1360>", "_predict": "<function ActorCriticPolicy._predict at 0x793a4cab13f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x793a4cab1480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x793a4cab1510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x793a4cab15a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x793a4ca377c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726825306982939286, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK0dIr7pbGw+Xn3DPc6tSr6w+Iw8O65RPQAAAAAAAAAADc8FPn9qVz9XgqQ9VMu6vs12vj3FBkK9AAAAAAAAAAA6FiO+8gsrPxLxWj1ALL++/2X0vTnOEj4AAAAAAAAAADNDtLpVvbI/XbKAvK00Nr6ZAJq64pjAuQAAAAAAAAAAmszuvLg+trlhS7y4Ky6gs/rFvbu6quM3AACAPwAAgD+KNZq+Ad0VPxXkqz67Foy+2F7xu0j5dT4AAAAAAAAAAOZzJ708vfM+Sx2/O+a0nb52sAU95YAOvQAAAAAAAAAA2rbRPfkNDT+vZQu+0rGfvtExgTygvG26AAAAAAAAAACadao8sJScPwYoDz027vu+F9etPb7LS70AAAAAAAAAAPMZAz4FNG8/zqawvT5A1r62q+I90nUlvgAAAAAAAAAAc2DfvXir7z5OlA0+XTFkvvgPGj3eUYS8AAAAAAAAAACgKA2+FI77OxuzDT6KZcm9TEdqPTIwu74AAAAAAACAPwC1tjxIB4+6t5UjN+9dIzKifFo6BR0+tgAAgD8AAIA/zRjMO7dYtT8tR6E+P+vvPY226bspn5C9AAAAAAAAAAATQVq+DfgJP2kdnj3uqaS+tBqVvVzdIz4AAAAAAAAAAAC30zzDPlY70l8svYncAL7S2YS8uqZePQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGkowRGtp6MAWyUTQkBjAF0lEdAkqrgEyLyc3V9lChoBkdAbbVjdYW+G2gHTQoBaAhHQJKr5uJk5IZ1fZQoaAZHQGxDRSP2f05oB01AAWgIR0CSrGlSjxkNdX2UKGgGR0Bwcd9Brvb5aAdNGQFoCEdAkqyrN4Z/C3V9lChoBkdAcIBnfEXLvGgHTRwBaAhHQJKsr/2kBS11fZQoaAZHQHF2l1GLDQ9oB00sAWgIR0CSrOjGT9sKdX2UKGgGR0Bx4tfjS5RTaAdNVwFoCEdAkq0A2/BWP3V9lChoBkdAbsdQC0WuYGgHTS0BaAhHQJKteYG+sYF1fZQoaAZHQG56Kg7HQyBoB00zAWgIR0CSrnuv2Xb/dX2UKGgGR0BNiQIldC3PaAdL9mgIR0CSrq3vQWvbdX2UKGgGR0Bw6uZnctXgaAdNQwFoCEdAkq6y9/SYxHV9lChoBkdAcD6vf0mMO2gHTQkBaAhHQJKvREsrd311fZQoaAZHQHCCDOkcjqxoB00iAWgIR0CSr49SuQp4dX2UKGgGR0BuTnT9bX6JaAdNNwFoCEdAkrDXm7rcCnV9lChoBkdAcPCglWwNb2gHS/poCEdAkrG54nndPHV9lChoBkdAb9JoYekpJGgHTQkBaAhHQJKyDUMG5c11fZQoaAZHQHHngAuIyj5oB00qAWgIR0CSs2MZxaPkdX2UKGgGR0Bw8wQPI4lyaAdNEgFoCEdAkrQItQKrrHV9lChoBkdAbz/7laKUFGgHTQYBaAhHQJK0RUcXFcZ1fZQoaAZHQG1YoOQQtjFoB00sAWgIR0CStWo3rD64dX2UKGgGR0BvruvllsguaAdNNgFoCEdAkrXhI8QqZ3V9lChoBkdAcKAv2oNutWgHS/doCEdAkrZhuCPIXHV9lChoBkdAbCPRceKba2gHTTkBaAhHQJK2Y2CNCJJ1fZQoaAZHQG3hNVzZHutoB00DAWgIR0CStpxC6YmcdX2UKGgGR0BussIAwPAgaAdNXwFoCEdAkra0/4ZdfXV9lChoBkdAcKXzeGfwqmgHTTkBaAhHQJK3KCvovBd1fZQoaAZHQG+0TdtVJcxoB00hAWgIR0CSt9sAvL5idX2UKGgGR0BzEFfzBhx6aAdNDQFoCEdAkrhRw6ySm3V9lChoBkdActs4Vh1DB2gHTTcBaAhHQJK5PbKzRhN1fZQoaAZHQG74Sr5qM3toB00MAWgIR0CSu8I0IkZ8dX2UKGgGR0BtxUSbpeNUaAdNTgFoCEdAkrzATZg5R3V9lChoBkdAcQxTPBzmwWgHTTQBaAhHQJK9BAIIF/x1fZQoaAZHQHCDiSeRPoFoB00BAWgIR0CSvhlyzXz2dX2UKGgGR0Bv1PfAKv3baAdNAAFoCEdAkr9Z1Ng0CXV9lChoBkdAcIwSeiBXjmgHTTUBaAhHQJK/Z59mYjV1fZQoaAZHQG+dzSkTHsFoB00wAWgIR0CSwBEHt4RmdX2UKGgGR0Bvvl2X9itraAdNDAFoCEdAksCu5e7cwnV9lChoBkdAcQt9Zid8RmgHS/toCEdAksDU9t/FznV9lChoBkdAcen508vEj2gHTSYBaAhHQJLBo9eQdS51fZQoaAZHQGxBIUBXCCVoB00vAWgIR0CSwdSWqtHQdX2UKGgGR0By7ZIpYs/ZaAdNQQFoCEdAksHjXFtKqXV9lChoBkdAcjoK4hEBsGgHTRoBaAhHQJLCPk4m1IB1fZQoaAZHQHGrRV2icoZoB02WAWgIR0CS1T+cH4XXdX2UKGgGR0BvQLOLR8c/aAdNbQFoCEdAktW+lXRw63V9lChoBkdAbYl7vXsgMmgHTXABaAhHQJLWrBP9DQZ1fZQoaAZHQHIdMTnJT2poB00rAWgIR0CS16wx33YddX2UKGgGR0Bwd9u63AmBaAdNQgFoCEdAktetdVvMr3V9lChoBkdAcdi0KJEYwmgHTRcBaAhHQJLYD0Eovzx1fZQoaAZHQHABrYf4h2ZoB00QAWgIR0CS2J5AQg9vdX2UKGgGR0BxqGmQ8wHraAdNFwFoCEdAktk4371qWXV9lChoBkdAbs7wMH8jzWgHTSUBaAhHQJLZQXEZR9B1fZQoaAZHQHNcka2nbZhoB01fAWgIR0CS2VxjawljdX2UKGgGR0Byz4NkOI69aAdNAAFoCEdAktoAqAjIJnV9lChoBkdAcuECqp97W2gHTSwBaAhHQJLaRRqGlAN1fZQoaAZHQHCnd21UlzFoB00bAWgIR0CS2tMNc4YKdX2UKGgGR0BxdBVZLZi/aAdNGQFoCEdAktsx7zCk43V9lChoBkdAb0vfUF0PpmgHTUgBaAhHQJLcCYhMajx1fZQoaAZHQHE6dOmBOHpoB00EAWgIR0CS3NHZK3/hdX2UKGgGR0Bqhxx95QgtaAdNygFoCEdAkt7dnbqQinV9lChoBkdAb1N72tdRi2gHTTwBaAhHQJLfIdhiLEV1fZQoaAZHQHKFwM2FWXFoB00lAWgIR0CS32hpxm03dX2UKGgGR0BxiX7gsK9gaAdNIQFoCEdAkt/nLq2SdXV9lChoBkdAbkdnezlcQmgHTSMBaAhHQJLf91A7gbZ1fZQoaAZHQHGcPDgqEvloB00JAWgIR0CS4B+Yc/+sdX2UKGgGR0ByWmpWFN+LaAdNLgFoCEdAkuCgHiWE9XV9lChoBkdActHR1X/5tWgHTQEBaAhHQJLgndAPd2x1fZQoaAZHQG2+SbYsd1doB00bAWgIR0CS4TZ5iVjadX2UKGgGR0BxCSFpPAO8aAdNKwFoCEdAkuGnYxtYS3V9lChoBkdAcZl2Dxsl9mgHTSEBaAhHQJLiIuL74zt1fZQoaAZHQFOvH446wMZoB0vIaAhHQJLiol4TsY51fZQoaAZHQHLQNmlImPZoB00iAWgIR0CS4wSCvovBdX2UKGgGR0BxnjMlkYoBaAdNQwFoCEdAkuNFW8yvcXV9lChoBkdAck2tK7I1cmgHTTsBaAhHQJLj+BYmsvJ1fZQoaAZHQHDzWf9P1thoB01UAWgIR0CS5Y6y0KJEdX2UKGgGR0BNW2K2rn1WaAdLymgIR0CS5f3RG+bmdX2UKGgGR0ByYT90ihWYaAdNIQFoCEdAkubNXcQAdXV9lChoBkdAcraaBI4EOmgHTRMBaAhHQJLm5A0Kqn51fZQoaAZHQHCb9WEK3NNoB00AAWgIR0CS5wtKIznBdX2UKGgGR0BxBZubZvkzaAdL92gIR0CS50k30f5ldX2UKGgGR0BwwSFCb+cZaAdNFQFoCEdAkud0QTVUdnV9lChoBkdAcHjnpjc2zmgHTUcBaAhHQJLoBDjR2KV1fZQoaAZHQHGflclgMMJoB004AWgIR0CS6E8vVVghdX2UKGgGR0BOL9zOoo/iaAdL2GgIR0CS6RIAfdRBdX2UKGgGR0Bv+Dd+G47SaAdNAgFoCEdAkuoGxhUip3V9lChoBkdAcuNpkPMB62gHTT8BaAhHQJLqQHiWE9N1fZQoaAZHQHCdjDGcWj5oB00FAWgIR0CS6wT101ZUdX2UKGgGR0Byo53W4EwGaAdNXQFoCEdAkuvoSlFc6nV9lChoBkdAcYFTUy57PmgHTRUBaAhHQJLsmmzjWCp1fZQoaAZHQHKi6BVdX1doB00QAWgIR0CS72dXko4NdX2UKGgGR0Bu+3OlfqoqaAdNBAFoCEdAkvAhppN9IHV9lChoBkdAcLTXHim2s2gHTQwBaAhHQJLwnnr6ciJ1fZQoaAZHQHK/7k0aZQZoB006AWgIR0CS8KwXqJMydX2UKGgGR0BsstbNbC79aAdNEwFoCEdAkvEpmh/RV3V9lChoBkdAbCNG96C17mgHTRkBaAhHQJLx14nndO91fZQoaAZHQHHGHcgyM1loB03bAWgIR0CS8f2Q4jrzdX2UKGgGR0BvKaBGx2SuaAdNBAFoCEdAkvKPVRUFS3V9lChoBkdAbC2x7iQ1aWgHTS8BaAhHQJLy8D9wWFh1fZQoaAZHQHFPLPldTpBoB00sAWgIR0CS86mnO0LMdX2UKGgGR0ByRk/s3Q2NaAdNEgFoCEdAkvTBh2GIsXV9lChoBkdAca+pYs/Y8WgHTTMBaAhHQJL05/LDAJt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |