mansoorhamidzadeh commited on
Commit
83e549a
1 Parent(s): 904b463

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -176
README.md CHANGED
@@ -13,196 +13,49 @@ datasets:
13
  - SajjadAyoubi/persian_qa
14
  ---
15
  # Model Card for Model ID
 
16
 
17
- <!-- Provide a quick summary of what the model is/does. -->
18
 
19
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
20
 
21
- ## Model Details
22
 
23
- ### Model Description
 
 
 
24
 
25
- <!-- Provide a longer summary of what this model is. -->
26
 
 
27
 
 
 
 
28
 
29
- - **Developed by:** [More Information Needed]
30
- - **Funded by [optional]:** [More Information Needed]
31
- - **Shared by [optional]:** [More Information Needed]
32
- - **Model type:** [More Information Needed]
33
- - **Language(s) (NLP):** [More Information Needed]
34
- - **License:** [More Information Needed]
35
- - **Finetuned from model [optional]:** [More Information Needed]
36
 
37
- ### Model Sources [optional]
38
 
39
- <!-- Provide the basic links for the model. -->
40
 
41
- - **Repository:** [More Information Needed]
42
- - **Paper [optional]:** [More Information Needed]
43
- - **Demo [optional]:** [More Information Needed]
44
 
45
- ## Uses
46
 
47
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
48
 
49
- ### Direct Use
 
 
50
 
51
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
52
 
53
- [More Information Needed]
 
 
 
54
 
55
- ### Downstream Use [optional]
56
-
57
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
58
-
59
- [More Information Needed]
60
-
61
- ### Out-of-Scope Use
62
-
63
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
64
-
65
- [More Information Needed]
66
-
67
- ## Bias, Risks, and Limitations
68
-
69
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
70
-
71
- [More Information Needed]
72
-
73
- ### Recommendations
74
-
75
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
76
-
77
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
78
-
79
- ## How to Get Started with the Model
80
-
81
- Use the code below to get started with the model.
82
-
83
- [More Information Needed]
84
-
85
- ## Training Details
86
-
87
- ### Training Data
88
-
89
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
90
-
91
- [More Information Needed]
92
-
93
- ### Training Procedure
94
-
95
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
96
-
97
- #### Preprocessing [optional]
98
-
99
- [More Information Needed]
100
-
101
-
102
- #### Training Hyperparameters
103
-
104
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
105
-
106
- #### Speeds, Sizes, Times [optional]
107
-
108
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
109
-
110
- [More Information Needed]
111
-
112
- ## Evaluation
113
-
114
- <!-- This section describes the evaluation protocols and provides the results. -->
115
-
116
- ### Testing Data, Factors & Metrics
117
-
118
- #### Testing Data
119
-
120
- <!-- This should link to a Dataset Card if possible. -->
121
-
122
- [More Information Needed]
123
-
124
- #### Factors
125
-
126
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
127
-
128
- [More Information Needed]
129
-
130
- #### Metrics
131
-
132
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
133
-
134
- [More Information Needed]
135
-
136
- ### Results
137
-
138
- [More Information Needed]
139
-
140
- #### Summary
141
-
142
-
143
-
144
- ## Model Examination [optional]
145
-
146
- <!-- Relevant interpretability work for the model goes here -->
147
-
148
- [More Information Needed]
149
-
150
- ## Environmental Impact
151
-
152
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
153
-
154
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
155
-
156
- - **Hardware Type:** [More Information Needed]
157
- - **Hours used:** [More Information Needed]
158
- - **Cloud Provider:** [More Information Needed]
159
- - **Compute Region:** [More Information Needed]
160
- - **Carbon Emitted:** [More Information Needed]
161
-
162
- ## Technical Specifications [optional]
163
-
164
- ### Model Architecture and Objective
165
-
166
- [More Information Needed]
167
-
168
- ### Compute Infrastructure
169
-
170
- [More Information Needed]
171
-
172
- #### Hardware
173
-
174
- [More Information Needed]
175
-
176
- #### Software
177
-
178
- [More Information Needed]
179
-
180
- ## Citation [optional]
181
-
182
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
183
-
184
- **BibTeX:**
185
-
186
- [More Information Needed]
187
-
188
- **APA:**
189
-
190
- [More Information Needed]
191
-
192
- ## Glossary [optional]
193
-
194
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
195
-
196
- [More Information Needed]
197
-
198
- ## More Information [optional]
199
-
200
- [More Information Needed]
201
-
202
- ## Model Card Authors [optional]
203
-
204
- [More Information Needed]
205
-
206
- ## Model Card Contact
207
-
208
- [More Information Needed]
 
13
  - SajjadAyoubi/persian_qa
14
  ---
15
  # Model Card for Model ID
16
+ # ParsBERT for Persian Question Answering
17
 
18
+ ## Model Description
19
 
20
+ `mansoorhamidzadeh/parsbert-persian-QA` is a fine-tuned version of the ParsBERT model, specifically adapted for the task of question answering in Persian. ParsBERT is a BERT-based model pre-trained on a large Persian text corpus. This model has been fine-tuned on a Persian QA dataset to provide accurate and contextually relevant answers to questions posed in Persian.
21
 
22
+ ## Model Architecture
23
 
24
+ - **Base Model**: ParsBERT
25
+ - **Task**: Question Answering
26
+ - **Language**: Persian
27
+ - **Number of Parameters**: 110M
28
 
29
+ ## Intended Use
30
 
31
+ This model is intended for use in applications requiring natural language understanding and question answering in Persian, such as:
32
 
33
+ - Persian language chatbots
34
+ - Persian information retrieval systems
35
+ - Educational tools for Persian language learners
36
 
37
+ ## Dataset
 
 
 
 
 
 
38
 
39
+ The model was fine-tuned on a Persian QA dataset. The dataset consists of question-answer pairs extracted from various Persian text sources, ensuring a diverse range of topics and contexts.
40
 
 
41
 
42
+ ## Usage
 
 
43
 
44
+ To use this model for question answering in Persian, you can load it using the Hugging Face Transformers library. Here’s a quick example:
45
 
46
+ ```python
47
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
48
 
49
+ # Load the tokenizer and model
50
+ tokenizer = AutoTokenizer.from_pretrained("mansoorhamidzadeh/parsbert-persian-QA")
51
+ model = AutoModelForQuestionAnswering.from_pretrained("mansoorhamidzadeh/parsbert-persian-QA")
52
 
53
+ # Create a QA pipeline
54
+ qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
55
 
56
+ # Example usage
57
+ context = "متن زمینه که شامل اطلاعات مرتبط با سوال شما است."
58
+ question = "سوال شما چیست؟"
59
+ result = qa_pipeline(question=question, context=context)
60
 
61
+ print(f"Answer: {result['answer']}")