config: (): colpali_engine.utils.train_colpali_engine_models.ColModelTrainingConfig output_dir: !path ../../../models/train_colpali_docmatix_hardneg_ib_3b-mix-448 processor: () : colpali_engine.utils.wrapper.AutoProcessorWrapper pretrained_model_name_or_path: "./models/paligemma-3b-mix-448" max_length: 50 model: (): colpali_engine.utils.wrapper.AutoColModelWrapper pretrained_model_name_or_path: "./models/paligemma-3b-mix-448" training_objective: "colbertv1" # attn_implementation: "eager" torch_dtype: !ext torch.bfloat16 # device_map: "auto" # quantization_config: # (): transformers.BitsAndBytesConfig # load_in_4bit: true # bnb_4bit_quant_type: "nf4" # bnb_4bit_compute_dtype: "bfloat16" # bnb_4bit_use_double_quant: true dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_docmatix_ir_negs eval_dataset_loader: !import ../data/test_data.yaml max_length: 50 run_eval: true add_suffix: true loss_func: (): colpali_engine.loss.colbert_loss.ColbertPairwiseNegativeCELoss in_batch_term: true tr_args: !import ../tr_args/default_neg_tr_args.yaml peft_config: (): peft.LoraConfig r: 32 lora_alpha: 32 lora_dropout: 0.1 init_lora_weights: "gaussian" bias: "none" task_type: "FEATURE_EXTRACTION" target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)' # target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'