--- base_model: manuel-couto-pintos/roberta_erisk datasets: [] language: [] library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:50881 - loss:TripletLoss widget: - source_sentence: I smoked weed for the first time ever a couple days ago, how long until it's out of my system? sentences: - If I haven't smoked weed in a long time and smoked 1 day, how long will it be in my urine? - Where can we find best delay pedal? - How long does it take for an avid weed smoker to pass a urine drug test? - source_sentence: What are the visiting places in coorg? sentences: - How can I find a co-working space in Gurgaon? - What are the places to visit in coorg? - What are your favourite celebrity cookbooks? - source_sentence: What is the best used car to get under 5k? sentences: - What's the best used car for under 5k? - What do you think about RBI's new move of banning 500 and 1000 notes? - Which is the best car to buy under 6 lakhs? - source_sentence: Which exercises can I do at home to reduce belly fat? sentences: - What exercise we can do to reduce belly fat at home? - What is a first time home buyer? - My upper body is in shape but my thighs are very fatty and big ...so how can I reduce my thighs .I am doing running of 3km daily only? - source_sentence: Which is the best affiliate program? sentences: - How can I learn to make good coffee at home? - What are the best affiliate networks in the UK? - What are the best affiliate programs? --- # SentenceTransformer based on manuel-couto-pintos/roberta_erisk This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [manuel-couto-pintos/roberta_erisk](https://huggingface.co/manuel-couto-pintos/roberta_erisk). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [manuel-couto-pintos/roberta_erisk](https://huggingface.co/manuel-couto-pintos/roberta_erisk) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("manuel-couto-pintos/roberta_erisk_sts") # Run inference sentences = [ 'Which is the best affiliate program?', 'What are the best affiliate programs?', 'What are the best affiliate networks in the UK?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 50,881 training samples * Columns: sentence_0, sentence_1, and sentence_2 * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | sentence_2 | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | sentence_0 | sentence_1 | sentence_2 | |:---------------------------------------------------------------|:--------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------| | What is a good definition of Quora? | What is the best definition of Quora? | What is Quora address? | | How can I make myself appear offline on facebook? | How do you make sure to appear as offline on Facebook? | How can I get Facebook to remember to keep chat offline? | | How do I gain some healthy weight? | What is the best way for underweight to gain weight? | My boyfriend doesn't eat a lot. What are some ways to help him gain weight fast? He's 5'7 120lbs | * Loss: [TripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 10 - `per_device_eval_batch_size`: 10 - `num_train_epochs`: 10 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 10 - `per_device_eval_batch_size`: 10 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs
Click to expand | Epoch | Step | Training Loss | |:------:|:-----:|:-------------:| | 0.0983 | 500 | 4.3807 | | 0.1965 | 1000 | 2.5872 | | 0.2948 | 1500 | 1.7484 | | 0.3930 | 2000 | 1.2649 | | 0.4913 | 2500 | 1.0219 | | 0.5895 | 3000 | 0.8703 | | 0.6878 | 3500 | 0.771 | | 0.7860 | 4000 | 0.655 | | 0.8843 | 4500 | 0.6547 | | 0.9825 | 5000 | 0.5772 | | 1.0808 | 5500 | 0.5628 | | 1.1790 | 6000 | 0.5163 | | 1.2773 | 6500 | 0.4871 | | 1.3755 | 7000 | 0.4842 | | 1.4738 | 7500 | 0.4316 | | 1.5720 | 8000 | 0.4199 | | 1.6703 | 8500 | 0.3554 | | 1.7685 | 9000 | 0.3467 | | 1.8668 | 9500 | 0.3591 | | 1.9650 | 10000 | 0.3356 | | 2.0633 | 10500 | 0.3281 | | 2.1615 | 11000 | 0.3149 | | 2.2598 | 11500 | 0.2767 | | 2.3580 | 12000 | 0.2849 | | 2.4563 | 12500 | 0.244 | | 2.5545 | 13000 | 0.2416 | | 2.6528 | 13500 | 0.2008 | | 2.7510 | 14000 | 0.1718 | | 2.8493 | 14500 | 0.188 | | 2.9475 | 15000 | 0.1656 | | 3.0458 | 15500 | 0.1522 | | 3.1440 | 16000 | 0.144 | | 3.2423 | 16500 | 0.1329 | | 3.3405 | 17000 | 0.1431 | | 3.4388 | 17500 | 0.128 | | 3.5370 | 18000 | 0.1251 | | 3.6353 | 18500 | 0.0921 | | 3.7335 | 19000 | 0.0882 | | 3.8318 | 19500 | 0.1087 | | 3.9300 | 20000 | 0.0819 | | 4.0283 | 20500 | 0.0916 | | 4.1265 | 21000 | 0.0837 | | 4.2248 | 21500 | 0.0855 | | 4.3230 | 22000 | 0.0727 | | 4.4213 | 22500 | 0.0772 | | 4.5196 | 23000 | 0.0676 | | 4.6178 | 23500 | 0.0597 | | 4.7161 | 24000 | 0.0555 | | 4.8143 | 24500 | 0.0613 | | 4.9126 | 25000 | 0.0589 | | 5.0108 | 25500 | 0.0503 | | 5.1091 | 26000 | 0.0546 | | 5.2073 | 26500 | 0.0446 | | 5.3056 | 27000 | 0.0591 | | 5.4038 | 27500 | 0.0431 | | 5.5021 | 28000 | 0.0402 | | 5.6003 | 28500 | 0.0354 | | 5.6986 | 29000 | 0.0405 | | 5.7968 | 29500 | 0.0308 | | 5.8951 | 30000 | 0.0363 | | 5.9933 | 30500 | 0.0365 | | 6.0916 | 31000 | 0.0333 | | 6.1898 | 31500 | 0.0238 | | 6.2881 | 32000 | 0.0372 | | 6.3863 | 32500 | 0.0331 | | 6.4846 | 33000 | 0.0253 | | 6.5828 | 33500 | 0.0315 | | 6.6811 | 34000 | 0.0193 | | 6.7793 | 34500 | 0.0239 | | 6.8776 | 35000 | 0.0201 | | 6.9758 | 35500 | 0.0213 | | 7.0741 | 36000 | 0.0187 | | 7.1723 | 36500 | 0.0125 | | 7.2706 | 37000 | 0.0151 | | 7.3688 | 37500 | 0.0208 | | 7.4671 | 38000 | 0.0101 | | 7.5653 | 38500 | 0.0191 | | 7.6636 | 39000 | 0.0125 | | 7.7618 | 39500 | 0.0136 | | 7.8601 | 40000 | 0.0135 | | 7.9583 | 40500 | 0.0118 | | 8.0566 | 41000 | 0.012 | | 8.1548 | 41500 | 0.0079 | | 8.2531 | 42000 | 0.0105 | | 8.3513 | 42500 | 0.0094 | | 8.4496 | 43000 | 0.0079 | | 8.5478 | 43500 | 0.0118 | | 8.6461 | 44000 | 0.0105 | | 8.7444 | 44500 | 0.0058 | | 8.8426 | 45000 | 0.013 | | 8.9409 | 45500 | 0.0065 | | 9.0391 | 46000 | 0.0089 | | 9.1374 | 46500 | 0.0031 | | 9.2356 | 47000 | 0.008 | | 9.3339 | 47500 | 0.0065 | | 9.4321 | 48000 | 0.0052 | | 9.5304 | 48500 | 0.0066 | | 9.6286 | 49000 | 0.0039 | | 9.7269 | 49500 | 0.004 | | 9.8251 | 50000 | 0.0051 | | 9.9234 | 50500 | 0.003 |
### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.0.1 - Transformers: 4.44.2 - PyTorch: 2.0.1+cu117 - Accelerate: 0.32.0 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```