--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-base-finetuned-mcqa results: [] --- # deberta-v3-base-finetuned-mcqa This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3869 - Accuracy: 0.262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3888 | 1.0 | 563 | 1.3869 | 0.262 | | 1.3881 | 2.0 | 1126 | 1.3875 | 0.262 | | 1.3877 | 3.0 | 1689 | 1.3871 | 0.236 | | 1.3877 | 4.0 | 2252 | 1.3871 | 0.262 | | 1.3873 | 5.0 | 2815 | 1.3867 | 0.236 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3