|
--- |
|
language: de |
|
datasets: |
|
- common_voice |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 Large 53 |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice de |
|
type: common_voice |
|
args: de |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 15.80 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-German |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on German using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
test_dataset = load_dataset("common_voice", "de", split="test[:2%]") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-53-german") |
|
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-53-german") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the {language} test data of Common Voice. |
|
|
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
|
|
test_dataset = load_dataset("common_voice", "de", split="test") |
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-53-german") |
|
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-53-german") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\�\カ\æ\無\ན\カ\臣\ѹ\…\«\»\ð\ı\„\幺\א\ב\比\ш\ע\)\ứ\в\œ\ч\+\—\ш\‚\נ\м\ń\乡\$\=\ש\ф\支\(\°\и\к\̇]' |
|
substitutions = { |
|
'e' : '[\ə\é\ě\ę\ê\ế\ế\ë\ė\е]', |
|
'o' : '[\ō\ô\ô\ó\ò\ø\ọ\ŏ\õ\ő\о]', |
|
'a' : '[\á\ā\ā\ă\ã\å\â\à\ą\а]', |
|
'c' : '[\č\ć\ç\с]', |
|
'l' : '[\ł]', |
|
'u' : '[\ú\ū\ứ\ů]', |
|
'und' : '[\&]', |
|
'r' : '[\ř]', |
|
'y' : '[\ý]', |
|
's' : '[\ś\š\ș\ş]', |
|
'i' : '[\ī\ǐ\í\ï\î\ï]', |
|
'z' : '[\ź\ž\ź\ż]', |
|
'n' : '[\ñ\ń\ņ]', |
|
'g' : '[\ğ]', |
|
'ss' : '[\ß]', |
|
't' : '[\ț\ť]', |
|
'd' : '[\ď\đ]', |
|
"'": '[\ʿ\་\’\`\´\ʻ\`\‘]', |
|
'p': '\р' |
|
} |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
for x in substitutions: |
|
batch["sentence"] = re.sub(substitutions[x], x, batch["sentence"]) |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
``` |
|
|
|
The model can also be evaluated with in 10% chunks which needs less ressources (to be tested). |
|
|
|
``` |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
import jiwer |
|
lang_id = "de" |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-53-german") |
|
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-53-german") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\�\カ\æ\無\ན\カ\臣\ѹ\…\«\»\ð\ı\„\幺\א\ב\比\ш\ע\)\ứ\в\œ\ч\+\—\ш\‚\נ\м\ń\乡\$\=\ש\ф\支\(\°\и\к\̇]' |
|
substitutions = { |
|
'e' : '[\ə\é\ě\ę\ê\ế\ế\ë\ė\е]', |
|
'o' : '[\ō\ô\ô\ó\ò\ø\ọ\ŏ\õ\ő\о]', |
|
'a' : '[\á\ā\ā\ă\ã\å\â\à\ą\а]', |
|
'c' : '[\č\ć\ç\с]', |
|
'l' : '[\ł]', |
|
'u' : '[\ú\ū\ứ\ů]', |
|
'und' : '[\&]', |
|
'r' : '[\ř]', |
|
'y' : '[\ý]', |
|
's' : '[\ś\š\ș\ş]', |
|
'i' : '[\ī\ǐ\í\ï\î\ï]', |
|
'z' : '[\ź\ž\ź\ż]', |
|
'n' : '[\ñ\ń\ņ]', |
|
'g' : '[\ğ]', |
|
'ss' : '[\ß]', |
|
't' : '[\ț\ť]', |
|
'd' : '[\ď\đ]', |
|
"'": '[\ʿ\་\’\`\´\ʻ\`\‘]', |
|
'p': '\р' |
|
} |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
for x in substitutions: |
|
batch["sentence"] = re.sub(substitutions[x], x, batch["sentence"]) |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
|
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
H, S, D, I = 0, 0, 0, 0 |
|
for i in range(10): |
|
print("test["+str(10*i)+"%:"+str(10*(i+1))+"%]") |
|
test_dataset = load_dataset("common_voice", "de", split="test["+str(10*i)+"%:"+str(10*(i+1))+"%]") |
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
predictions = result["pred_strings"] |
|
targets = result["sentence"] |
|
chunk_metrics = jiwer.compute_measures(targets, predictions) |
|
H = H + chunk_metrics["hits"] |
|
S = S + chunk_metrics["substitutions"] |
|
D = D + chunk_metrics["deletions"] |
|
I = I + chunk_metrics["insertions"] |
|
WER = float(S + D + I) / float(H + S + D) |
|
print("WER: {:2f}".format(WER*100)) |
|
``` |
|
|
|
**Test Result**: 15.80 % |
|
|
|
|
|
## Training |
|
|
|
The first 50% of the Common Voice `train`, and 12% of the `validation` datasets were used for training (30 epochs on first 12% and 3 epochs on the remainder). |
|
|
|
|