File size: 2,757 Bytes
a9362ac 7888197 7b6e1d0 71c65ab fde1595 92eb005 b61c08f 412fa13 b61c08f 27f7299 b61c08f f4bfe26 1388208 f4bfe26 b61c08f a0d37b2 1151431 92eb005 a0d37b2 92eb005 7888197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: llama3.1
tags:
- Psychology
- unsloth
pipeline_tag: text-generation
library_name: transformers
---
### Model Summary:
Llama-3.1-Centaur-70B is a foundation model of cognition model that can predict and simulate human behavior in any behavioral experiment expressed in natural language.
- **Paper:** [Centaur: a foundation model of human cognition](https://marcelbinz.github.io/imgs/Centaur__preprint_.pdf)
- **Point of Contact:** [Marcel Binz](mailto:marcel.binz@helmholtz-munich.de)
### Usage:
Note that Centaur is trained on a data set in which human choices are encapsulated by "<<" and ">>" tokens. For optimal performance, it is recommended to adjust prompts accordingly.
You can use the model using HuggingFace Transformers library with 2 or more 80GB GPUs (NVIDIA Ampere or newer) with at least 150GB of free disk space to accommodate the download.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "marcelbinz/Llama-3.1-Centaur-70B"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
You can alternatively run the model with unsloth on a single 80GB GPU using the [low-rank adapter](https://huggingface.co/marcelbinz/Llama-3.1-Centaur-70B-adapter).
### Licensing Information
[Llama 3.1 Community License Agreement](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct/blob/main/LICENSE)
### Citation Information
```
@misc{binz2024centaurfoundationmodelhuman,
title={Centaur: a foundation model of human cognition},
author={Marcel Binz and Elif Akata and Matthias Bethge and Franziska Brändle and Fred Callaway and Julian Coda-Forno and Peter Dayan and Can Demircan and Maria K. Eckstein and Noémi Éltető and Thomas L. Griffiths and Susanne Haridi and Akshay K. Jagadish and Li Ji-An and Alexander Kipnis and Sreejan Kumar and Tobias Ludwig and Marvin Mathony and Marcelo Mattar and Alireza Modirshanechi and Surabhi S. Nath and Joshua C. Peterson and Milena Rmus and Evan M. Russek and Tankred Saanum and Natalia Scharfenberg and Johannes A. Schubert and Luca M. Schulze Buschoff and Nishad Singhi and Xin Sui and Mirko Thalmann and Fabian Theis and Vuong Truong and Vishaal Udandarao and Konstantinos Voudouris and Robert Wilson and Kristin Witte and Shuchen Wu and Dirk Wulff and Huadong Xiong and Eric Schulz},
year={2024},
eprint={2410.20268},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2410.20268},
}
```
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |