marcodifelice
commited on
Commit
•
2f637a7
1
Parent(s):
560b726
End of training
Browse files- README.md +78 -0
- logs/events.out.tfevents.1679302259.MacBook-Pro-di-Marco.local.1763.0 +2 -2
- preprocessor_config.json +14 -0
- pytorch_model.bin +1 -1
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +38 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- funsd
|
6 |
+
model-index:
|
7 |
+
- name: layoutlm-funsd
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# layoutlm-funsd
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.6866
|
19 |
+
- Answer: {'precision': 0.7130339539978094, 'recall': 0.8046971569839307, 'f1': 0.7560975609756098, 'number': 809}
|
20 |
+
- Header: {'precision': 0.3384615384615385, 'recall': 0.3697478991596639, 'f1': 0.35341365461847385, 'number': 119}
|
21 |
+
- Question: {'precision': 0.7763975155279503, 'recall': 0.8215962441314554, 'f1': 0.7983576642335766, 'number': 1065}
|
22 |
+
- Overall Precision: 0.7235
|
23 |
+
- Overall Recall: 0.7878
|
24 |
+
- Overall F1: 0.7543
|
25 |
+
- Overall Accuracy: 0.8126
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 3e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 15
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
56 |
+
| 1.7968 | 1.0 | 10 | 1.5972 | {'precision': 0.011235955056179775, 'recall': 0.011124845488257108, 'f1': 0.011180124223602483, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1959544879898862, 'recall': 0.14553990610328638, 'f1': 0.1670258620689655, 'number': 1065} | 0.1030 | 0.0823 | 0.0915 | 0.3535 |
|
57 |
+
| 1.4694 | 2.0 | 20 | 1.2467 | {'precision': 0.2002053388090349, 'recall': 0.24103831891223734, 'f1': 0.21873247335950646, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.43186895011169024, 'recall': 0.5446009389671361, 'f1': 0.48172757475083056, 'number': 1065} | 0.3345 | 0.3889 | 0.3596 | 0.6093 |
|
58 |
+
| 1.0892 | 3.0 | 30 | 0.9301 | {'precision': 0.49691991786447637, 'recall': 0.5982694684796045, 'f1': 0.5429052159282108, 'number': 809} | {'precision': 0.08108108108108109, 'recall': 0.025210084033613446, 'f1': 0.038461538461538464, 'number': 119} | {'precision': 0.5869205298013245, 'recall': 0.6657276995305165, 'f1': 0.62384513858337, 'number': 1065} | 0.5390 | 0.6001 | 0.5679 | 0.7041 |
|
59 |
+
| 0.8148 | 4.0 | 40 | 0.7921 | {'precision': 0.5805243445692884, 'recall': 0.7663782447466008, 'f1': 0.660628662759723, 'number': 809} | {'precision': 0.2, 'recall': 0.12605042016806722, 'f1': 0.15463917525773196, 'number': 119} | {'precision': 0.6657534246575343, 'recall': 0.6845070422535211, 'f1': 0.6749999999999999, 'number': 1065} | 0.6095 | 0.6844 | 0.6448 | 0.7498 |
|
60 |
+
| 0.6789 | 5.0 | 50 | 0.7126 | {'precision': 0.6466942148760331, 'recall': 0.7737948084054388, 'f1': 0.7045582442318515, 'number': 809} | {'precision': 0.23809523809523808, 'recall': 0.21008403361344538, 'f1': 0.22321428571428573, 'number': 119} | {'precision': 0.6851535836177475, 'recall': 0.7539906103286385, 'f1': 0.7179257934734019, 'number': 1065} | 0.6477 | 0.7296 | 0.6862 | 0.7822 |
|
61 |
+
| 0.5701 | 6.0 | 60 | 0.6734 | {'precision': 0.6524390243902439, 'recall': 0.7935723114956736, 'f1': 0.7161182375906302, 'number': 809} | {'precision': 0.25, 'recall': 0.18487394957983194, 'f1': 0.21256038647342995, 'number': 119} | {'precision': 0.6886564762670957, 'recall': 0.8037558685446009, 'f1': 0.7417677642980937, 'number': 1065} | 0.6566 | 0.7627 | 0.7057 | 0.7949 |
|
62 |
+
| 0.497 | 7.0 | 70 | 0.6688 | {'precision': 0.6719745222929936, 'recall': 0.7824474660074165, 'f1': 0.7230154197601371, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.2689075630252101, 'f1': 0.277056277056277, 'number': 119} | {'precision': 0.7403267411865864, 'recall': 0.8084507042253521, 'f1': 0.7728904847396768, 'number': 1065} | 0.6883 | 0.7657 | 0.7249 | 0.7976 |
|
63 |
+
| 0.4549 | 8.0 | 80 | 0.6561 | {'precision': 0.6881028938906752, 'recall': 0.7935723114956736, 'f1': 0.7370838117106774, 'number': 809} | {'precision': 0.25, 'recall': 0.25210084033613445, 'f1': 0.2510460251046025, 'number': 119} | {'precision': 0.7432784041630529, 'recall': 0.8046948356807512, 'f1': 0.7727682596934174, 'number': 1065} | 0.6931 | 0.7672 | 0.7283 | 0.8045 |
|
64 |
+
| 0.4095 | 9.0 | 90 | 0.6514 | {'precision': 0.694206008583691, 'recall': 0.799752781211372, 'f1': 0.7432510051694429, 'number': 809} | {'precision': 0.29411764705882354, 'recall': 0.29411764705882354, 'f1': 0.29411764705882354, 'number': 119} | {'precision': 0.7452830188679245, 'recall': 0.815962441314554, 'f1': 0.7790228597041686, 'number': 1065} | 0.6996 | 0.7782 | 0.7368 | 0.8027 |
|
65 |
+
| 0.3629 | 10.0 | 100 | 0.6616 | {'precision': 0.7035010940919038, 'recall': 0.7948084054388134, 'f1': 0.7463726059199072, 'number': 809} | {'precision': 0.29927007299270075, 'recall': 0.3445378151260504, 'f1': 0.3203125, 'number': 119} | {'precision': 0.7564216120460585, 'recall': 0.8018779342723005, 'f1': 0.7784867821330903, 'number': 1065} | 0.7055 | 0.7717 | 0.7371 | 0.8075 |
|
66 |
+
| 0.3322 | 11.0 | 110 | 0.6668 | {'precision': 0.7112068965517241, 'recall': 0.8158220024721878, 'f1': 0.75993091537133, 'number': 809} | {'precision': 0.336283185840708, 'recall': 0.31932773109243695, 'f1': 0.32758620689655166, 'number': 119} | {'precision': 0.783273381294964, 'recall': 0.8178403755868544, 'f1': 0.8001837390904916, 'number': 1065} | 0.7288 | 0.7873 | 0.7569 | 0.8120 |
|
67 |
+
| 0.3188 | 12.0 | 120 | 0.6768 | {'precision': 0.7225305216426193, 'recall': 0.8046971569839307, 'f1': 0.7614035087719299, 'number': 809} | {'precision': 0.33076923076923076, 'recall': 0.36134453781512604, 'f1': 0.34538152610441764, 'number': 119} | {'precision': 0.7759078830823738, 'recall': 0.8225352112676056, 'f1': 0.7985414767547857, 'number': 1065} | 0.7269 | 0.7878 | 0.7561 | 0.8119 |
|
68 |
+
| 0.2936 | 13.0 | 130 | 0.6787 | {'precision': 0.7122692725298588, 'recall': 0.8108776266996292, 'f1': 0.7583815028901735, 'number': 809} | {'precision': 0.35384615384615387, 'recall': 0.3865546218487395, 'f1': 0.3694779116465864, 'number': 119} | {'precision': 0.7807486631016043, 'recall': 0.8225352112676056, 'f1': 0.8010973936899862, 'number': 1065} | 0.7262 | 0.7918 | 0.7576 | 0.8133 |
|
69 |
+
| 0.2894 | 14.0 | 140 | 0.6863 | {'precision': 0.7113289760348583, 'recall': 0.8071693448702101, 'f1': 0.7562246670526924, 'number': 809} | {'precision': 0.34108527131782945, 'recall': 0.3697478991596639, 'f1': 0.35483870967741943, 'number': 119} | {'precision': 0.7852650494159928, 'recall': 0.8206572769953052, 'f1': 0.8025711662075299, 'number': 1065} | 0.7273 | 0.7883 | 0.7566 | 0.8111 |
|
70 |
+
| 0.2813 | 15.0 | 150 | 0.6866 | {'precision': 0.7130339539978094, 'recall': 0.8046971569839307, 'f1': 0.7560975609756098, 'number': 809} | {'precision': 0.3384615384615385, 'recall': 0.3697478991596639, 'f1': 0.35341365461847385, 'number': 119} | {'precision': 0.7763975155279503, 'recall': 0.8215962441314554, 'f1': 0.7983576642335766, 'number': 1065} | 0.7235 | 0.7878 | 0.7543 | 0.8126 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.27.1
|
76 |
+
- Pytorch 1.12.1
|
77 |
+
- Datasets 2.6.1
|
78 |
+
- Tokenizers 0.13.2
|
logs/events.out.tfevents.1679302259.MacBook-Pro-di-Marco.local.1763.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9423f74489b9c66f199be3c1088d1d19e5652e4adfe4730ae43f0108b71144f
|
3 |
+
size 14340
|
preprocessor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"feature_extractor_type": "LayoutLMv2FeatureExtractor",
|
5 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
6 |
+
"ocr_lang": null,
|
7 |
+
"processor_class": "LayoutLMv2Processor",
|
8 |
+
"resample": 2,
|
9 |
+
"size": {
|
10 |
+
"height": 224,
|
11 |
+
"width": 224
|
12 |
+
},
|
13 |
+
"tesseract_config": ""
|
14 |
+
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450603685
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd3b534df82b7775eda4b53b986a8fd554b343abc9b2eaaad152522850645de1
|
3 |
size 450603685
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": null,
|
3 |
+
"apply_ocr": false,
|
4 |
+
"cls_token": "[CLS]",
|
5 |
+
"cls_token_box": [
|
6 |
+
0,
|
7 |
+
0,
|
8 |
+
0,
|
9 |
+
0
|
10 |
+
],
|
11 |
+
"do_basic_tokenize": true,
|
12 |
+
"do_lower_case": true,
|
13 |
+
"mask_token": "[MASK]",
|
14 |
+
"model_max_length": 512,
|
15 |
+
"never_split": null,
|
16 |
+
"only_label_first_subword": true,
|
17 |
+
"pad_token": "[PAD]",
|
18 |
+
"pad_token_box": [
|
19 |
+
0,
|
20 |
+
0,
|
21 |
+
0,
|
22 |
+
0
|
23 |
+
],
|
24 |
+
"pad_token_label": -100,
|
25 |
+
"processor_class": "LayoutLMv2Processor",
|
26 |
+
"sep_token": "[SEP]",
|
27 |
+
"sep_token_box": [
|
28 |
+
1000,
|
29 |
+
1000,
|
30 |
+
1000,
|
31 |
+
1000
|
32 |
+
],
|
33 |
+
"special_tokens_map_file": null,
|
34 |
+
"strip_accents": null,
|
35 |
+
"tokenize_chinese_chars": true,
|
36 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
37 |
+
"unk_token": "[UNK]"
|
38 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|