File size: 118,371 Bytes
87b6881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# !python3 -m venv env \n",
"# !source env/bin/activate \n",
"# !pip3 install langchain\n",
"# !pip3 install pypdf2"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting transformers\n",
" Downloading transformers-4.44.2-py3-none-any.whl.metadata (43 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m43.7/43.7 kB\u001b[0m \u001b[31m198.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hCollecting filelock (from transformers)\n",
" Downloading filelock-3.16.0-py3-none-any.whl.metadata (3.0 kB)\n",
"Collecting huggingface-hub<1.0,>=0.23.2 (from transformers)\n",
" Downloading huggingface_hub-0.24.6-py3-none-any.whl.metadata (13 kB)\n",
"Requirement already satisfied: numpy>=1.17 in ./env/lib/python3.11/site-packages (from transformers) (1.26.4)\n",
"Requirement already satisfied: packaging>=20.0 in ./env/lib/python3.11/site-packages (from transformers) (24.1)\n",
"Requirement already satisfied: pyyaml>=5.1 in ./env/lib/python3.11/site-packages (from transformers) (6.0.2)\n",
"Collecting regex!=2019.12.17 (from transformers)\n",
" Downloading regex-2024.7.24-cp311-cp311-macosx_11_0_arm64.whl.metadata (40 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.5/40.5 kB\u001b[0m \u001b[31m992.0 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: requests in ./env/lib/python3.11/site-packages (from transformers) (2.32.3)\n",
"Collecting safetensors>=0.4.1 (from transformers)\n",
" Downloading safetensors-0.4.5-cp311-cp311-macosx_11_0_arm64.whl.metadata (3.8 kB)\n",
"Collecting tokenizers<0.20,>=0.19 (from transformers)\n",
" Downloading tokenizers-0.19.1-cp311-cp311-macosx_11_0_arm64.whl.metadata (6.7 kB)\n",
"Collecting tqdm>=4.27 (from transformers)\n",
" Downloading tqdm-4.66.5-py3-none-any.whl.metadata (57 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.6/57.6 kB\u001b[0m \u001b[31m966.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hCollecting fsspec>=2023.5.0 (from huggingface-hub<1.0,>=0.23.2->transformers)\n",
" Downloading fsspec-2024.9.0-py3-none-any.whl.metadata (11 kB)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in ./env/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.23.2->transformers) (4.12.2)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in ./env/lib/python3.11/site-packages (from requests->transformers) (3.3.2)\n",
"Requirement already satisfied: idna<4,>=2.5 in ./env/lib/python3.11/site-packages (from requests->transformers) (3.8)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in ./env/lib/python3.11/site-packages (from requests->transformers) (2.2.2)\n",
"Requirement already satisfied: certifi>=2017.4.17 in ./env/lib/python3.11/site-packages (from requests->transformers) (2024.7.4)\n",
"Downloading transformers-4.44.2-py3-none-any.whl (9.5 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m9.5/9.5 MB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m0m\n",
"\u001b[?25hDownloading huggingface_hub-0.24.6-py3-none-any.whl (417 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m417.5/417.5 kB\u001b[0m \u001b[31m14.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading regex-2024.7.24-cp311-cp311-macosx_11_0_arm64.whl (278 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m278.9/278.9 kB\u001b[0m \u001b[31m13.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading safetensors-0.4.5-cp311-cp311-macosx_11_0_arm64.whl (381 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m381.5/381.5 kB\u001b[0m \u001b[31m13.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading tokenizers-0.19.1-cp311-cp311-macosx_11_0_arm64.whl (2.4 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m3.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0mm\n",
"\u001b[?25hDownloading tqdm-4.66.5-py3-none-any.whl (78 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m78.4/78.4 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading filelock-3.16.0-py3-none-any.whl (16 kB)\n",
"Downloading fsspec-2024.9.0-py3-none-any.whl (179 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m10.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hInstalling collected packages: tqdm, safetensors, regex, fsspec, filelock, huggingface-hub, tokenizers, transformers\n",
"Successfully installed filelock-3.16.0 fsspec-2024.9.0 huggingface-hub-0.24.6 regex-2024.7.24 safetensors-0.4.5 tokenizers-0.19.1 tqdm-4.66.5 transformers-4.44.2\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install transformers\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting tensorflow\n",
" Downloading tensorflow-2.17.0-cp311-cp311-macosx_12_0_arm64.whl.metadata (4.1 kB)\n",
"Collecting absl-py>=1.0.0 (from tensorflow)\n",
" Downloading absl_py-2.1.0-py3-none-any.whl.metadata (2.3 kB)\n",
"Collecting astunparse>=1.6.0 (from tensorflow)\n",
" Downloading astunparse-1.6.3-py2.py3-none-any.whl.metadata (4.4 kB)\n",
"Collecting flatbuffers>=24.3.25 (from tensorflow)\n",
" Downloading flatbuffers-24.3.25-py2.py3-none-any.whl.metadata (850 bytes)\n",
"Collecting gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 (from tensorflow)\n",
" Downloading gast-0.6.0-py3-none-any.whl.metadata (1.3 kB)\n",
"Collecting google-pasta>=0.1.1 (from tensorflow)\n",
" Downloading google_pasta-0.2.0-py3-none-any.whl.metadata (814 bytes)\n",
"Collecting h5py>=3.10.0 (from tensorflow)\n",
" Downloading h5py-3.11.0-cp311-cp311-macosx_11_0_arm64.whl.metadata (2.5 kB)\n",
"Collecting libclang>=13.0.0 (from tensorflow)\n",
" Downloading libclang-18.1.1-1-py2.py3-none-macosx_11_0_arm64.whl.metadata (5.2 kB)\n",
"Collecting ml-dtypes<0.5.0,>=0.3.1 (from tensorflow)\n",
" Downloading ml_dtypes-0.4.0-cp311-cp311-macosx_10_9_universal2.whl.metadata (20 kB)\n",
"Collecting opt-einsum>=2.3.2 (from tensorflow)\n",
" Downloading opt_einsum-3.3.0-py3-none-any.whl.metadata (6.5 kB)\n",
"Requirement already satisfied: packaging in ./env/lib/python3.11/site-packages (from tensorflow) (24.1)\n",
"Collecting protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 (from tensorflow)\n",
" Downloading protobuf-4.25.4-cp37-abi3-macosx_10_9_universal2.whl.metadata (541 bytes)\n",
"Requirement already satisfied: requests<3,>=2.21.0 in ./env/lib/python3.11/site-packages (from tensorflow) (2.32.3)\n",
"Requirement already satisfied: setuptools in ./env/lib/python3.11/site-packages (from tensorflow) (68.2.2)\n",
"Requirement already satisfied: six>=1.12.0 in ./env/lib/python3.11/site-packages (from tensorflow) (1.16.0)\n",
"Collecting termcolor>=1.1.0 (from tensorflow)\n",
" Downloading termcolor-2.4.0-py3-none-any.whl.metadata (6.1 kB)\n",
"Requirement already satisfied: typing-extensions>=3.6.6 in ./env/lib/python3.11/site-packages (from tensorflow) (4.12.2)\n",
"Collecting wrapt>=1.11.0 (from tensorflow)\n",
" Downloading wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl.metadata (6.6 kB)\n",
"Collecting grpcio<2.0,>=1.24.3 (from tensorflow)\n",
" Downloading grpcio-1.66.1-cp311-cp311-macosx_10_9_universal2.whl.metadata (3.9 kB)\n",
"Collecting tensorboard<2.18,>=2.17 (from tensorflow)\n",
" Downloading tensorboard-2.17.1-py3-none-any.whl.metadata (1.6 kB)\n",
"Collecting keras>=3.2.0 (from tensorflow)\n",
" Downloading keras-3.5.0-py3-none-any.whl.metadata (5.8 kB)\n",
"Collecting tensorflow-io-gcs-filesystem>=0.23.1 (from tensorflow)\n",
" Downloading tensorflow_io_gcs_filesystem-0.37.1-cp311-cp311-macosx_12_0_arm64.whl.metadata (14 kB)\n",
"Requirement already satisfied: numpy<2.0.0,>=1.23.5 in ./env/lib/python3.11/site-packages (from tensorflow) (1.26.4)\n",
"Collecting wheel<1.0,>=0.23.0 (from astunparse>=1.6.0->tensorflow)\n",
" Downloading wheel-0.44.0-py3-none-any.whl.metadata (2.3 kB)\n",
"Collecting rich (from keras>=3.2.0->tensorflow)\n",
" Downloading rich-13.8.1-py3-none-any.whl.metadata (18 kB)\n",
"Collecting namex (from keras>=3.2.0->tensorflow)\n",
" Downloading namex-0.0.8-py3-none-any.whl.metadata (246 bytes)\n",
"Collecting optree (from keras>=3.2.0->tensorflow)\n",
" Downloading optree-0.12.1-cp311-cp311-macosx_11_0_arm64.whl.metadata (47 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m47.8/47.8 kB\u001b[0m \u001b[31m263.9 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: charset-normalizer<4,>=2 in ./env/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow) (3.3.2)\n",
"Requirement already satisfied: idna<4,>=2.5 in ./env/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow) (3.8)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in ./env/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow) (2.2.2)\n",
"Requirement already satisfied: certifi>=2017.4.17 in ./env/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow) (2024.7.4)\n",
"Collecting markdown>=2.6.8 (from tensorboard<2.18,>=2.17->tensorflow)\n",
" Downloading Markdown-3.7-py3-none-any.whl.metadata (7.0 kB)\n",
"Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard<2.18,>=2.17->tensorflow)\n",
" Downloading tensorboard_data_server-0.7.2-py3-none-any.whl.metadata (1.1 kB)\n",
"Collecting werkzeug>=1.0.1 (from tensorboard<2.18,>=2.17->tensorflow)\n",
" Downloading werkzeug-3.0.4-py3-none-any.whl.metadata (3.7 kB)\n",
"Collecting MarkupSafe>=2.1.1 (from werkzeug>=1.0.1->tensorboard<2.18,>=2.17->tensorflow)\n",
" Downloading MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl.metadata (3.0 kB)\n",
"Collecting markdown-it-py>=2.2.0 (from rich->keras>=3.2.0->tensorflow)\n",
" Downloading markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB)\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in ./env/lib/python3.11/site-packages (from rich->keras>=3.2.0->tensorflow) (2.18.0)\n",
"Collecting mdurl~=0.1 (from markdown-it-py>=2.2.0->rich->keras>=3.2.0->tensorflow)\n",
" Downloading mdurl-0.1.2-py3-none-any.whl.metadata (1.6 kB)\n",
"Downloading tensorflow-2.17.0-cp311-cp311-macosx_12_0_arm64.whl (236.2 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m236.2/236.2 MB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading absl_py-2.1.0-py3-none-any.whl (133 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m133.7/133.7 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\n",
"Downloading flatbuffers-24.3.25-py2.py3-none-any.whl (26 kB)\n",
"Downloading gast-0.6.0-py3-none-any.whl (21 kB)\n",
"Downloading google_pasta-0.2.0-py3-none-any.whl (57 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.5/57.5 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading grpcio-1.66.1-cp311-cp311-macosx_10_9_universal2.whl (10.6 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.6/10.6 MB\u001b[0m \u001b[31m9.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading h5py-3.11.0-cp311-cp311-macosx_11_0_arm64.whl (2.9 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.9/2.9 MB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mta \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hDownloading keras-3.5.0-py3-none-any.whl (1.1 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m10.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hDownloading libclang-18.1.1-1-py2.py3-none-macosx_11_0_arm64.whl (25.8 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m25.8/25.8 MB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading ml_dtypes-0.4.0-cp311-cp311-macosx_10_9_universal2.whl (390 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m390.9/390.9 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m\n",
"\u001b[?25hDownloading opt_einsum-3.3.0-py3-none-any.whl (65 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m65.5/65.5 kB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading protobuf-4.25.4-cp37-abi3-macosx_10_9_universal2.whl (394 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m394.2/394.2 kB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m\n",
"\u001b[?25hDownloading tensorboard-2.17.1-py3-none-any.whl (5.5 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.5/5.5 MB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0mm\n",
"\u001b[?25hDownloading tensorflow_io_gcs_filesystem-0.37.1-cp311-cp311-macosx_12_0_arm64.whl (3.5 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.5/3.5 MB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0mm\n",
"\u001b[?25hDownloading termcolor-2.4.0-py3-none-any.whl (7.7 kB)\n",
"Downloading wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl (38 kB)\n",
"Downloading Markdown-3.7-py3-none-any.whl (106 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m106.3/106.3 kB\u001b[0m \u001b[31m11.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB)\n",
"Downloading werkzeug-3.0.4-py3-none-any.whl (227 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m227.6/227.6 kB\u001b[0m \u001b[31m10.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading wheel-0.44.0-py3-none-any.whl (67 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.1/67.1 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading namex-0.0.8-py3-none-any.whl (5.8 kB)\n",
"Downloading optree-0.12.1-cp311-cp311-macosx_11_0_arm64.whl (283 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m283.7/283.7 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading rich-13.8.1-py3-none-any.whl (241 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m241.6/241.6 kB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading markdown_it_py-3.0.0-py3-none-any.whl (87 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.5/87.5 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl (18 kB)\n",
"Downloading mdurl-0.1.2-py3-none-any.whl (10.0 kB)\n",
"Installing collected packages: namex, libclang, flatbuffers, wrapt, wheel, termcolor, tensorflow-io-gcs-filesystem, tensorboard-data-server, protobuf, optree, opt-einsum, ml-dtypes, mdurl, MarkupSafe, markdown, h5py, grpcio, google-pasta, gast, absl-py, werkzeug, markdown-it-py, astunparse, tensorboard, rich, keras, tensorflow\n",
"Successfully installed MarkupSafe-2.1.5 absl-py-2.1.0 astunparse-1.6.3 flatbuffers-24.3.25 gast-0.6.0 google-pasta-0.2.0 grpcio-1.66.1 h5py-3.11.0 keras-3.5.0 libclang-18.1.1 markdown-3.7 markdown-it-py-3.0.0 mdurl-0.1.2 ml-dtypes-0.4.0 namex-0.0.8 opt-einsum-3.3.0 optree-0.12.1 protobuf-4.25.4 rich-13.8.1 tensorboard-2.17.1 tensorboard-data-server-0.7.2 tensorflow-2.17.0 tensorflow-io-gcs-filesystem-0.37.1 termcolor-2.4.0 werkzeug-3.0.4 wheel-0.44.0 wrapt-1.16.0\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install tensorflow"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found existing installation: keras 3.5.0\n",
"Uninstalling keras-3.5.0:\n",
" Would remove:\n",
" /Users/camilayepes/Documents/bankruptcy_automation/env/lib/python3.11/site-packages/keras-3.5.0.dist-info/*\n",
" /Users/camilayepes/Documents/bankruptcy_automation/env/lib/python3.11/site-packages/keras/*\n",
"Proceed (Y/n)? ^C\n",
"\u001b[31mERROR: Operation cancelled by user\u001b[0m\u001b[31m\n",
"\u001b[0mCollecting tf-keras\n",
" Downloading tf_keras-2.17.0-py3-none-any.whl.metadata (1.6 kB)\n",
"Requirement already satisfied: tensorflow<2.18,>=2.17 in ./env/lib/python3.11/site-packages (from tf-keras) (2.17.0)\n",
"Requirement already satisfied: absl-py>=1.0.0 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (2.1.0)\n",
"Requirement already satisfied: astunparse>=1.6.0 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (1.6.3)\n",
"Requirement already satisfied: flatbuffers>=24.3.25 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (24.3.25)\n",
"Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (0.6.0)\n",
"Requirement already satisfied: google-pasta>=0.1.1 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (0.2.0)\n",
"Requirement already satisfied: h5py>=3.10.0 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (3.11.0)\n",
"Requirement already satisfied: libclang>=13.0.0 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (18.1.1)\n",
"Requirement already satisfied: ml-dtypes<0.5.0,>=0.3.1 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (0.4.0)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (3.3.0)\n",
"Requirement already satisfied: packaging in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (24.1)\n",
"Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (4.25.4)\n",
"Requirement already satisfied: requests<3,>=2.21.0 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (2.32.3)\n",
"Requirement already satisfied: setuptools in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (68.2.2)\n",
"Requirement already satisfied: six>=1.12.0 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (1.16.0)\n",
"Requirement already satisfied: termcolor>=1.1.0 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (2.4.0)\n",
"Requirement already satisfied: typing-extensions>=3.6.6 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (4.12.2)\n",
"Requirement already satisfied: wrapt>=1.11.0 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (1.16.0)\n",
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (1.66.1)\n",
"Requirement already satisfied: tensorboard<2.18,>=2.17 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (2.17.1)\n",
"Requirement already satisfied: keras>=3.2.0 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (3.5.0)\n",
"Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (0.37.1)\n",
"Requirement already satisfied: numpy<2.0.0,>=1.23.5 in ./env/lib/python3.11/site-packages (from tensorflow<2.18,>=2.17->tf-keras) (1.26.4)\n",
"Requirement already satisfied: wheel<1.0,>=0.23.0 in ./env/lib/python3.11/site-packages (from astunparse>=1.6.0->tensorflow<2.18,>=2.17->tf-keras) (0.44.0)\n",
"Requirement already satisfied: rich in ./env/lib/python3.11/site-packages (from keras>=3.2.0->tensorflow<2.18,>=2.17->tf-keras) (13.8.1)\n",
"Requirement already satisfied: namex in ./env/lib/python3.11/site-packages (from keras>=3.2.0->tensorflow<2.18,>=2.17->tf-keras) (0.0.8)\n",
"Requirement already satisfied: optree in ./env/lib/python3.11/site-packages (from keras>=3.2.0->tensorflow<2.18,>=2.17->tf-keras) (0.12.1)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in ./env/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow<2.18,>=2.17->tf-keras) (3.3.2)\n",
"Requirement already satisfied: idna<4,>=2.5 in ./env/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow<2.18,>=2.17->tf-keras) (3.8)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in ./env/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow<2.18,>=2.17->tf-keras) (2.2.2)\n",
"Requirement already satisfied: certifi>=2017.4.17 in ./env/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow<2.18,>=2.17->tf-keras) (2024.7.4)\n",
"Requirement already satisfied: markdown>=2.6.8 in ./env/lib/python3.11/site-packages (from tensorboard<2.18,>=2.17->tensorflow<2.18,>=2.17->tf-keras) (3.7)\n",
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in ./env/lib/python3.11/site-packages (from tensorboard<2.18,>=2.17->tensorflow<2.18,>=2.17->tf-keras) (0.7.2)\n",
"Requirement already satisfied: werkzeug>=1.0.1 in ./env/lib/python3.11/site-packages (from tensorboard<2.18,>=2.17->tensorflow<2.18,>=2.17->tf-keras) (3.0.4)\n",
"Requirement already satisfied: MarkupSafe>=2.1.1 in ./env/lib/python3.11/site-packages (from werkzeug>=1.0.1->tensorboard<2.18,>=2.17->tensorflow<2.18,>=2.17->tf-keras) (2.1.5)\n",
"Requirement already satisfied: markdown-it-py>=2.2.0 in ./env/lib/python3.11/site-packages (from rich->keras>=3.2.0->tensorflow<2.18,>=2.17->tf-keras) (3.0.0)\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in ./env/lib/python3.11/site-packages (from rich->keras>=3.2.0->tensorflow<2.18,>=2.17->tf-keras) (2.18.0)\n",
"Requirement already satisfied: mdurl~=0.1 in ./env/lib/python3.11/site-packages (from markdown-it-py>=2.2.0->rich->keras>=3.2.0->tensorflow<2.18,>=2.17->tf-keras) (0.1.2)\n",
"Downloading tf_keras-2.17.0-py3-none-any.whl (1.7 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m0m\n",
"\u001b[?25hInstalling collected packages: tf-keras\n",
"Successfully installed tf-keras-2.17.0\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip uninstall keras\n",
"!pip install tf-keras"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"All PyTorch model weights were used when initializing TFDistilBertForQuestionAnswering.\n",
"\n",
"All the weights of TFDistilBertForQuestionAnswering were initialized from the PyTorch model.\n",
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFDistilBertForQuestionAnswering for predictions without further training.\n",
"/Users/camilayepes/Documents/bankruptcy_automation/env/lib/python3.11/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
" warnings.warn(\n"
]
}
],
"source": [
"from transformers import pipeline\n",
"\n",
"# Load the pre-trained model\n",
"nlp = pipeline(\"question-answering\", model=\"distilbert-base-uncased-distilled-squad\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"context = \"\"\"\n",
"Hugging Face is an AI company specializing in Natural Language Processing (NLP). Their transformers library is widely used for various NLP tasks, including text classification, question answering, and summarization.\n",
"\"\"\"\n",
"question = \"What does Hugging Face specialize in?\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': 0.551713228225708, 'start': 47, 'end': 74, 'answer': 'Natural Language Processing'}\n"
]
}
],
"source": [
"result = nlp(question=question, context=context)\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import PyPDF2\n",
"import re"
]
},
{
"cell_type": "code",
"execution_count": 349,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting pdfplumber\n",
" Downloading pdfplumber-0.11.4-py3-none-any.whl.metadata (41 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.0/42.0 kB\u001b[0m \u001b[31m193.1 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hCollecting pdfminer.six==20231228 (from pdfplumber)\n",
" Downloading pdfminer.six-20231228-py3-none-any.whl.metadata (4.2 kB)\n",
"Collecting Pillow>=9.1 (from pdfplumber)\n",
" Downloading pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl.metadata (9.2 kB)\n",
"Collecting pypdfium2>=4.18.0 (from pdfplumber)\n",
" Downloading pypdfium2-4.30.0-py3-none-macosx_11_0_arm64.whl.metadata (48 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m48.5/48.5 kB\u001b[0m \u001b[31m955.1 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: charset-normalizer>=2.0.0 in ./env/lib/python3.11/site-packages (from pdfminer.six==20231228->pdfplumber) (3.3.2)\n",
"Collecting cryptography>=36.0.0 (from pdfminer.six==20231228->pdfplumber)\n",
" Downloading cryptography-43.0.1-cp39-abi3-macosx_10_9_universal2.whl.metadata (5.4 kB)\n",
"Collecting cffi>=1.12 (from cryptography>=36.0.0->pdfminer.six==20231228->pdfplumber)\n",
" Downloading cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl.metadata (1.5 kB)\n",
"Collecting pycparser (from cffi>=1.12->cryptography>=36.0.0->pdfminer.six==20231228->pdfplumber)\n",
" Downloading pycparser-2.22-py3-none-any.whl.metadata (943 bytes)\n",
"Downloading pdfplumber-0.11.4-py3-none-any.whl (59 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.2/59.2 kB\u001b[0m \u001b[31m1.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hDownloading pdfminer.six-20231228-py3-none-any.whl (5.6 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.6/5.6 MB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m0m\n",
"\u001b[?25hDownloading pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl (3.4 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0mm\n",
"\u001b[?25hDownloading pypdfium2-4.30.0-py3-none-macosx_11_0_arm64.whl (2.7 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.7/2.7 MB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0mm\n",
"\u001b[?25hDownloading cryptography-43.0.1-cp39-abi3-macosx_10_9_universal2.whl (6.2 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.2/6.2 MB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0mm\n",
"\u001b[?25hDownloading cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl (178 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m178.7/178.7 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading pycparser-2.22-py3-none-any.whl (117 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.6/117.6 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hInstalling collected packages: pypdfium2, pycparser, Pillow, cffi, cryptography, pdfminer.six, pdfplumber\n",
"Successfully installed Pillow-10.4.0 cffi-1.17.1 cryptography-43.0.1 pdfminer.six-20231228 pdfplumber-0.11.4 pycparser-2.22 pypdfium2-4.30.0\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install pdfplumber\n",
"#fitz"
]
},
{
"cell_type": "code",
"execution_count": 351,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"UNITED STATES BANKRUPTCY COURT\n",
"MIDDLE DISTRICT OF GEORGIA\n",
"IN RE: CHAPTER 13\n",
"Ashley Unshandra Haygood\n",
"DEBTOR(S) CASE NO.24−50911−AEC\n",
"ORDER OF DISMISSAL\n",
"It appearing to the Court that the trustee has moved to dismiss the above−captioned case, and sent notice of said\n",
"motion and hearing date to the debtor(s) and debtor's(s') attorney, if any; and a hearing was held on this motion\n",
"wherein just cause was found to grant the trustee's motion; and it is hereby\n",
"ORDERED that this case be and the same is dismissed; and it is further\n",
"ORDERED that the Clerk of this Court take such action as is appropriate to close this case.\n",
"Dated: 8/26/24 /s/ Austin E. Carter\n",
"United States Bankruptcy Judge\n",
"Powered by TCPDF (www.tcpdf.org)\n",
"1 / 1\n"
]
}
],
"source": [
"import pdfplumber\n",
"\n",
"pdf_path = \"BK Examples/Ashley Unshandra Haygood.pdf\"\n",
"text_all = \"\"\n",
"\n",
"# Open the PDF file\n",
"with pdfplumber.open(pdf_path) as pdf:\n",
" # Iterate through each page\n",
" for page in pdf.pages:\n",
" text = page.extract_text()\n",
" text_all += text\n",
"\n",
"print(text_all)\n"
]
},
{
"cell_type": "code",
"execution_count": 354,
"metadata": {},
"outputs": [],
"source": [
"with open(\"BK Examples/Ashley Unshandra Haygood.pdf\", \"rb\") as file:\n",
" reader = PyPDF2.PdfReader(file)\n",
" text_all = ''\n",
" # Extract text from each page\n",
" for page_num in range(len(reader.pages)):\n",
" page = reader.pages[page_num]\n",
" text = page.extract_text()\n",
" text_all = text_all +text"
]
},
{
"cell_type": "code",
"execution_count": 355,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\" \\nUNITED STATES BANKRUPTCY COURT\\nMIDDLE DISTRICT OF GEORGIA\\nIN RE: CHAPTER 13\\nAshley Unshandra Haygood\\nDEBTOR(S) CASE NO.24−50911−AEC\\nORDER OF DISMISSAL\\n It appearing to the Court that the trustee has moved to dismiss the above−captioned case, and sent notice of said\\nmotion and hearing date to the debtor(s) and debtor's(s') attorney, if any; and a hearing was held on this motion\\nwherein just cause was found to grant the trustee's motion; and it is hereby\\nORDERED that this case be and the same is dismissed; and it is further\\nORDERED that the Clerk of this Court take such action as is appropriate to close this case.\\nDated: 8/26/24 /s/ Austin E. Carter\\nUnited States Bankruptcy JudgePowered by TCPDF (www.tcpdf.org)\\n 1 / 1\""
]
},
"execution_count": 355,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"text_all"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"context = \"\"\"\n",
"Hugging Face is an AI company specializing in Natural Language Processing (NLP). Their transformers library is widely used for various NLP tasks, including text classification, question answering, and summarization.\n",
"\"\"\"\n",
"question = \"What is the state according to the country? Like Utah\""
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': 0.0804615467786789, 'start': 330, 'end': 383, 'answer': 'United States Bankruptcy Court District of UtahDate'}\n"
]
}
],
"source": [
"result = nlp(question=question, context=text_all)\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"question = \"Which stage is the proccess at? Answer between petition,discharge or dismissed ?\""
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': 0.3394260108470917, 'start': 1563, 'end': 1578, 'answer': 'chapter 13 plan'}\n"
]
}
],
"source": [
"result = nlp(question=question, context=text_all)\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"question = \"What are the Social Security number or ITIN?\"\n",
"question = \"List all the Social Security number or ITIN\""
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"question = \"What are the Social Security number or ITIN?\"\n",
"question = \"how many Social Security number or ITIN are in the text?\""
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': 0.7864278554916382, 'start': 137, 'end': 148, 'answer': '461−81−0513'}\n"
]
}
],
"source": [
"result = nlp(question=question, context=text_all)\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"All PyTorch model weights were used when initializing TFDistilBertForQuestionAnswering.\n",
"\n",
"All the weights of TFDistilBertForQuestionAnswering were initialized from the PyTorch model.\n",
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFDistilBertForQuestionAnswering for predictions without further training.\n"
]
}
],
"source": [
"from transformers import DistilBertTokenizer, TFDistilBertForQuestionAnswering\n",
"import tensorflow as tf\n",
"\n",
"tokenizer = DistilBertTokenizer.from_pretrained(\"distilbert-base-cased-distilled-squad\")\n",
"model = TFDistilBertForQuestionAnswering.from_pretrained(\"distilbert-base-cased-distilled-squad\")\n"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {},
"outputs": [],
"source": [
"question = \"What is the fifth Social Security number or ITIN in the text?\""
]
},
{
"cell_type": "code",
"execution_count": 123,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' \\nInformation to identify the case:\\nDebtor 1 Cristina Nelson\\nFirst Name Middle Name Last NameSocial Security number or ITIN 461−81−0513\\nEIN _ _−_ _ _ _ _ _ _\\nDebtor 2\\n(Spouse, if filing)Timothy Nelson\\nFirst Name Middle Name Last NameSocial Security number or ITIN 529−97−1200\\nEIN _ _−_ _ _ _ _ _ _\\nUnited States Bankruptcy Court District of UtahDate case filed for chapter 13: 8/7/24Case number: 24−23963 JTM\\nOfficial Form 309I\\nNotice of Chapter 13 Bankruptcy Case 10/20\\nFor the debtors listed above, a case has been filed under chapter 13 of the Bankruptcy Code. An order for relief has\\nbeen entered.\\nThis notice has important information about the case for creditors, debtors, and trustees, including information about\\nthe meeting of creditors and deadlines. Read both pages carefully.\\nThe filing of the case imposed an automatic stay against most collection activities. This means that creditors generally may not take action to collect debts\\nfrom the debt'"
]
},
"execution_count": 123,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import DistilBertTokenizer, TFDistilBertForQuestionAnswering\n",
"import tensorflow as tf\n",
"\n",
"tokenizer = DistilBertTokenizer.from_pretrained(\"distilbert-base-cased-distilled-squad\")\n",
"model = TFDistilBertForQuestionAnswering.from_pretrained(\"distilbert-base-cased-distilled-squad\")\n",
"\n",
"question = \"What is the fifth Social Security number or ITIN in the text?\"\n",
"inputs = tokenizer(question, text_all[:3000], return_tensors=\"tf\")\n",
"outputs = model(**inputs)\n",
"answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])\n",
"answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])\n",
"predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]\n",
"tokenizer.decode(predict_answer_tokens)"
]
},
{
"cell_type": "code",
"execution_count": 155,
"metadata": {},
"outputs": [],
"source": [
"inputs = inputs = tokenizer(question, text, return_tensors=\"tf\")"
]
},
{
"cell_type": "code",
"execution_count": 156,
"metadata": {},
"outputs": [],
"source": [
"input_ids = inputs['input_ids'].numpy()[0]"
]
},
{
"cell_type": "code",
"execution_count": 157,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"708"
]
},
"execution_count": 157,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(input_ids)"
]
},
{
"cell_type": "code",
"execution_count": 159,
"metadata": {},
"outputs": [],
"source": [
"chunks = []\n",
"for start in range(0, len(input_ids), 512 - 2): # -2 for [CLS] and [SEP]\n",
" end = min(start + 512 - 2, len(input_ids))\n",
" chunk = input_ids[start:end]\n",
" chunks.append(chunk)"
]
},
{
"cell_type": "code",
"execution_count": 164,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"198"
]
},
"execution_count": 164,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
},
{
"cell_type": "code",
"execution_count": 165,
"metadata": {},
"outputs": [],
"source": [
"def chunk_text(text, tokenizer, max_length=512):\n",
" # Tokenize the text to get input IDs\n",
" inputs = tokenizer(question, text, return_tensors=\"tf\")\n",
" ##tokenizer(text, return_tensors=\"tf\", max_length=max_length, truncation=True, padding='max_length')\n",
" input_ids = inputs['input_ids'].numpy()[0]\n",
" \n",
" # Chunk the text\n",
" chunks = []\n",
" for start in range(0, len(input_ids), max_length - 2): # -2 for [CLS] and [SEP]\n",
" end = min(start + max_length - 2, len(input_ids))\n",
" chunk = input_ids[start:end]\n",
" chunks.append(chunk)\n",
" \n",
" return chunks"
]
},
{
"cell_type": "code",
"execution_count": 209,
"metadata": {},
"outputs": [],
"source": [
"def chunk_text(text, tokenizer, max_length=512):\n",
" # Tokenize the text into chunks\n",
" tokens = tokenizer(text, add_special_tokens=False, return_tensors=None)['input_ids']\n",
" chunks = []\n",
" for start in range(0, len(tokens), max_length - 20): # -2 for [CLS] and [SEP]\n",
" end = min(start + max_length - 20, len(tokens))\n",
" chunk_tokens = tokens[start:end]\n",
" chunk_text = tokenizer.convert_ids_to_tokens(chunk_tokens, skip_special_tokens=True)\n",
" chunk_text = tokenizer.convert_tokens_to_string(chunk_text)\n",
" chunks.append(chunk_text)\n",
" \n",
" return chunks"
]
},
{
"cell_type": "code",
"execution_count": 192,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[\"Information to identify the case : Debtor 1 Cristina Nelson First Name Middle Name Last NameSocial Security number or ITIN 461−81−0513 EIN _ _ − _ _ _ _ _ _ _ Debtor 2 ( Spouse , if filing ) Timothy Nelson First Name Middle Name Last NameSocial Security number or ITIN 529−97−1200 EIN _ _ − _ _ _ _ _ _ _ United States Bankruptcy Court District of UtahDate case filed for chapter 13 : 8 / 7 / 24Case number : 24−23963 JTM Official Form 309I Notice of Chapter 13 Bankruptcy Case 10 / 20 For the debtors listed above , a case has been filed under chapter 13 of the Bankruptcy Code . An order for relief has been entered . This notice has important information about the case for creditors , debtors , and trustees , including information about the meeting of creditors and deadlines . Read both pages carefully . The filing of the case imposed an automatic stay against most collection activities . This means that creditors generally may not take action to collect debts from the debtors , the debtors ' property , and certain codebtors . For example , while the stay is in effect , creditors cannot sue , garnish wages , assert a deficiency , repossess property , or otherwise try to collect from the debtors . Creditors cannot demand repayment from debtors by mail , phone , or otherwise . Creditors who violate the stay can be required to pay actual and punitive damages and attorney ' s fees . Under certain circumstances , the stay may be limited to 30 days or not exist at all , although debtors can ask the court to extend or impose a stay . Confirmation of a chapter 13 plan may result in a discharge . Creditors who assert that the debtors are not entitled to a discharge under 11 U . S . C . § 1328 ( f ) must file a motion objecting to discharge in the bankruptcy clerk ' s office within the deadline specified in this notice . Creditors who want to have their debt excepted from discharge may be required to file a complaint in the bankruptcy clerk ' s office by the same deadline . ( See line 13 below for more information . ) To protect your rights , consult an attorney . All documents filed in the case may be inspected at\",\n",
" \"the bankruptcy clerk ' s office at the address listed below or through PACER ( Public Access to Court Electronic Records at https : / / pacer . uscourts . gov ) . Case status information is available at no charge by calling the Voice Case Information System ( VCIS ) at 1−866−222−8029 . The staff of the bankruptcy clerk ' s office cannot give legal advice . To help creditors correctly identify debtors , debtors submit full Social Security or Individual Taxpayer Identification Numbers , which may appear on a version of this notice . However , the full numbers must not appear on any document filed with the court . Do not file this notice with any proof of claim or other filing in the case . Do not include more than the last four digits of a Social Security or Individual Taxpayer Identification Number in any document , including attachments , that you file with the court . About Debtor 1 : About Debtor 2 : 1 . Debtor ' s full name Cristina Nelson Timothy Nelson 2 . All other names used in the last 8 years 3 . Address3342 N 1825 E Layton , UT 840401788 E 3350 N Layton , UT 84040 4 . Debtor ' s attorney Name and addressE . Kent Winward 4850 Harrison Blvd . Suite 1 Ogden , UT 84403Contact phone ( 801 ) 392−8200 Email : utahbankruptcyfirm @ gmail . com 5 . Bankruptcy trustee Name and addressLon Jenkins tr Ch . 13 Trustee ' s Office 465 South 400 East Suite 200 Salt Lake City , UT 84111Contact phone 801−596−2884 Email : utahtrusteemail @ ch13ut . org 6 . Bankruptcy clerk ' s office Documents in this case may be filed at this address . You may inspect all records filed in this case at this office or online at https : / / pacer . uscourts . gov . United States Bankruptcy Court District of Utah 350 South Main # 301 Salt Lake City , UT 84101 Clerk of Court : David A . SimeHours open : 8 : 00 AM to 4 : 30 PM , Monday − Friday Contact phone : ( 80\",\n",
" \"##1 ) 524−6687 Website : www . utb . uscourts . gov Official Form 309I Notice of Chapter 13 Bankruptcy Case page 1 Date Generated : 8 / 14 / 24 For more information , see page 2 > 1 / 2 Debtor Cristina Nelson and Timothy Nelson Case number 24−23963 7 . Meeting of creditors Debtors must attend the meeting to be questioned under oath . In a joint case , both spouses must attend . Creditors may attend , but are not required to do so . The meeting may be continued or adjourned to a later date . All individual debtor ( s ) must provide picture identification and proof of social security number to the trustee . Failure to do so may result in your case being dismissed . Meeting to be held on : Sep . 5 , 2024 at 11 : 00 AM Location : Zoom video meeting . Go to Zoom . us / join , Enter Meeting ID 437 037 6107 , and Passcode 3375693596 , OR call 1−385−832−9074 For additional meeting information go to https : / / www . justice . gov / ust / moc 8 . Deadlines The bankruptcy clerk ' s office must receive these documents and any required filing fee by the following deadlines . Deadline to file a complaint to challenge dischargeability of certain debts : Filing deadline : 11 / 4 / 24 You must file : • a motion if you assert that the debtors are not entitled to receive a discharge under U . S . C . § 1328 ( f ) , or • a complaint if you want to have a particular debt excepted from discharge under 11 U . S . C . § 523 ( a ) ( 2 ) or ( 4 ) . Deadline for all creditors to file a proof of claim ( except governmental units ) : Filing deadline : 10 / 16 / 24 Deadline for governmental units to file a proof of claim : Filing deadline : 2 / 3 / 25 Deadlines for filing proof of claim : A proof of claim is a signed statement describing a creditor ' s claim . A proof of claim form may be obtained at www . uscourts . gov or any bankruptcy clerk ' s office . If you do not file a proof of claim by the deadline , you might not be\",\n",
" 'paid on your claim . To be paid , you must file a proof of claim even if your claim is listed in the schedules that the debtor filed . Secured creditors retain rights in their collateral regardless of whether they file a proof of claim . Filing a proof of claim submits the creditor to the jurisdiction of the bankruptcy court , with consequences a lawyer can explain . For example , a secured creditor who files a proof of claim may surrender important nonmonetary rights , including the right to a jury trial . Deadline to object to exemptions : The law permits debtors to keep certain property as exempt . If you believe that the law does not authorize an exemption claimed , you may file an objection . Filing deadline : 30 days after the conclusion of the meeting of creditors 9 . Filing of plan and confirmation hearing on docket Objections to ConfirmationThe debtor has filed a plan . The hearing on confirmation will be held on : 10 / 10 / 24 at 10 : 00 AM Location : This meeting is by Zoom . Go to , ZoomGov . com / join or call 1 + ( 669 ) 254−5252 , Enter Meeting ID 161 5478 8875 , Passcode 3834658 Objections to confirmation must be filed and served no later than 7 days before the date set for confirmation . If there are no timely filed objections to confirmation pending or if all objections to confirmation are resolved by a court order or a stipulation signed by the debtor , the trustee and the objecting party , a plan may be confirmed without objection , and the hearing stricken . 10 . Creditors with a foreign addressIf you are a creditor receiving a notice mailed to a foreign address , you may file a motion asking the court to extend the deadline in this notice . Consult an attorney familiar with United States bankruptcy law if you have any questions about your rights in this case . 11 . Filing a chapter 13 bankruptcy caseChapter 13 allows an individual with regular income and debts below a specified amount to adjust debts according to a plan . A plan is not effective unless the court confirms it . You may object to confirmation of the plan and appear at the confirmation hearing . A copy of the plan , if not enclosed , will be sent to you later , and if the confirmation hearing is not indicated on this notice , you will',\n",
" \"be sent notice of the confirmation hearing . The debtor will remain in possession of the property and may continue to operate the business , if any , unless the court orders otherwise . 12 . Exempt property The law allows debtors to keep certain property as exempt . Fully exempt property will not be sold and distributed to creditors , even if the case is converted to chapter 7 . Debtors must file a list of property claimed as exempt . You may inspect that list at the bankruptcy clerk ' s office or online at https : / / pacer . uscourts . gov . If you believe that the law does not authorize an exemption that debtors claimed , you may file an objection by the deadline . 13 . Discharge of debts Confirmation of a chapter 13 plan may result in a discharge of debts , which may include all or part of a debt . However , unless the court orders otherwise , the debts will not be discharged until all payments under the plan are made . A discharge means that creditors may never try to collect the debt from the debtors personally except as provided in the plan . If you want to have a particular debt excepted from discharge under 11 U . S . C . § 523 ( a ) ( 2 ) or ( 4 ) , you must file a complaint and pay the filing fee in the bankruptcy clerk ' s office by the deadline . If you believe that the debtors are not entitled to a discharge of any of their debts under 11 U . S . C . § 1328 ( f ) , you must file a motion by the deadline . Official Form 309I Notice of Chapter 13 Bankruptcy Case page 2Powered by TCPDF ( www . tcpdf . org ) 2 / 2\"]"
]
},
"execution_count": 192,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chunk_text(text_all, tokenizer)"
]
},
{
"cell_type": "code",
"execution_count": 193,
"metadata": {},
"outputs": [],
"source": [
"chunks = chunk_text(text_all, tokenizer)\n",
"start_logits = []\n",
"end_logits = []"
]
},
{
"cell_type": "code",
"execution_count": 197,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5"
]
},
"execution_count": 197,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(chunks)"
]
},
{
"cell_type": "code",
"execution_count": 199,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'paid on your claim . To be paid , you must file a proof of claim even if your claim is listed in the schedules that the debtor filed . Secured creditors retain rights in their collateral regardless of whether they file a proof of claim . Filing a proof of claim submits the creditor to the jurisdiction of the bankruptcy court , with consequences a lawyer can explain . For example , a secured creditor who files a proof of claim may surrender important nonmonetary rights , including the right to a jury trial . Deadline to object to exemptions : The law permits debtors to keep certain property as exempt . If you believe that the law does not authorize an exemption claimed , you may file an objection . Filing deadline : 30 days after the conclusion of the meeting of creditors 9 . Filing of plan and confirmation hearing on docket Objections to ConfirmationThe debtor has filed a plan . The hearing on confirmation will be held on : 10 / 10 / 24 at 10 : 00 AM Location : This meeting is by Zoom . Go to , ZoomGov . com / join or call 1 + ( 669 ) 254−5252 , Enter Meeting ID 161 5478 8875 , Passcode 3834658 Objections to confirmation must be filed and served no later than 7 days before the date set for confirmation . If there are no timely filed objections to confirmation pending or if all objections to confirmation are resolved by a court order or a stipulation signed by the debtor , the trustee and the objecting party , a plan may be confirmed without objection , and the hearing stricken . 10 . Creditors with a foreign addressIf you are a creditor receiving a notice mailed to a foreign address , you may file a motion asking the court to extend the deadline in this notice . Consult an attorney familiar with United States bankruptcy law if you have any questions about your rights in this case . 11 . Filing a chapter 13 bankruptcy caseChapter 13 allows an individual with regular income and debts below a specified amount to adjust debts according to a plan . A plan is not effective unless the court confirms it . You may object to confirmation of the plan and appear at the confirmation hearing . A copy of the plan , if not enclosed , will be sent to you later , and if the confirmation hearing is not indicated on this notice , you will'"
]
},
"execution_count": 199,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chunks[3]"
]
},
{
"cell_type": "code",
"execution_count": 195,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'What are the Social Security numbers or ITIN in the text?'"
]
},
"execution_count": 195,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"question"
]
},
{
"cell_type": "code",
"execution_count": 200,
"metadata": {},
"outputs": [],
"source": [
"inputs = tokenizer(question, chunks[0], return_tensors=\"tf\")\n",
"outputs = model(**inputs)\n",
"start_logits.append(outputs.start_logits)\n",
"end_logits.append(outputs.end_logits)"
]
},
{
"cell_type": "code",
"execution_count": 201,
"metadata": {},
"outputs": [],
"source": [
"start_logits.append(outputs.start_logits)\n",
"end_logits.append(outputs.end_logits)"
]
},
{
"cell_type": "code",
"execution_count": 208,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'What are the Social Security numbers or ITIN in the text?'"
]
},
"execution_count": 208,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"question"
]
},
{
"cell_type": "code",
"execution_count": 225,
"metadata": {},
"outputs": [],
"source": [
"def get_answer(question, text_all):\n",
" chunks = chunk_text(text_all, tokenizer)\n",
" start_logits = []\n",
" end_logits = []\n",
"\n",
" for chunk in chunks:\n",
" inputs = tokenizer(question, chunk, return_tensors=\"tf\", max_length=512, truncation=True)\n",
" outputs = model(**inputs)\n",
" start_logits.append(outputs.start_logits)\n",
" end_logits.append(outputs.end_logits)\n",
" \n",
" start_logits = tf.concat(start_logits, axis=1)\n",
" end_logits = tf.concat(end_logits, axis=1)\n",
" \n",
" print('1', start_logits)\n",
" print('2', end_logits)\n",
" # Find the best start and end indices\n",
" answer_start_index = int(tf.math.argmax(start_logits, axis=-1)[0])\n",
" answer_end_index = int(tf.math.argmax(end_logits, axis=-1)[0])\n",
" print('3', answer_start_index)\n",
" print('4', answer_end_index)\n",
" # Get the predicted answer\n",
" predict_answer_tokens = inputs[\"input_ids\"][0, answer_start_index : answer_end_index + 1]\n",
" return tokenizer.decode(predict_answer_tokens)"
]
},
{
"cell_type": "code",
"execution_count": 227,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1 tf.Tensor([[-1.251733 -7.9249597 -9.82178 ... -7.0328403 -4.5499053 -8.900514 ]], shape=(1, 2383), dtype=float32)\n",
"2 tf.Tensor(\n",
"[[ -0.8806853 -8.205478 -10.482227 ... -6.0008802 -0.83891714\n",
" -9.523805 ]], shape=(1, 2383), dtype=float32)\n",
"3 503\n",
"4 503\n",
"\n"
]
}
],
"source": [
"# Example usage\n",
"#question = \"What are is the third Social Security number or ITIN in the text?\"\n",
"question = \"What is the Notice of Chapter?\"\n",
"answer = get_answer(question, text_all)\n",
"print(answer)"
]
},
{
"cell_type": "code",
"execution_count": 241,
"metadata": {},
"outputs": [],
"source": [
"def get_answer(question, text_all):\n",
" chunks = chunk_text(text_all, tokenizer)\n",
" start_logits = []\n",
" end_logits = []\n",
" input_ids_all = []\n",
"\n",
" for chunk in chunks:\n",
" # Tokenize the question and chunk text\n",
" inputs = tokenizer(question, chunk, return_tensors=\"tf\", max_length=512, truncation=True, padding='max_length')\n",
" outputs = model(**inputs)\n",
" \n",
" # Collect logits and input_ids for all chunks\n",
" start_logits.append(outputs.start_logits)\n",
" end_logits.append(outputs.end_logits)\n",
" input_ids_all.append(inputs[\"input_ids\"])\n",
"\n",
" # Concatenate all logits and input_ids\n",
" start_logits = tf.concat(start_logits, axis=1)\n",
" end_logits = tf.concat(end_logits, axis=1)\n",
" input_ids_all = tf.concat(input_ids_all, axis=1)\n",
" \n",
" # Find the best start and end indices\n",
" answer_start_index = int(tf.math.argmax(start_logits, axis=-1)[0])\n",
" answer_end_index = int(tf.math.argmax(end_logits, axis=-1)[0])\n",
" \n",
" # Get the predicted answer\n",
" predict_answer_tokens = input_ids_all[0, answer_start_index : answer_end_index + 1]\n",
" return tokenizer.decode(predict_answer_tokens)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 290,
"metadata": {},
"outputs": [],
"source": [
"def get_answer(question, text_all):\n",
" chunks = chunk_text(text_all, tokenizer)\n",
" start_logits = []\n",
" end_logits = []\n",
" input_ids_all = []\n",
" all_ands = []\n",
" for chunk in chunks:\n",
" # Tokenize the question and chunk text\n",
" inputs = tokenizer(question, chunk, return_tensors=\"tf\", max_length=512, truncation=True, padding='max_length')\n",
" outputs = model(**inputs)\n",
" #print(outputs)\n",
" answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])\n",
" answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])\n",
" predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]\n",
" print(tokenizer.decode(predict_answer_tokens),answer_start_index,answer_end_index)\n",
" all_ands.append(tokenizer.decode(predict_answer_tokens))\n",
"\n",
" start_logits.append(outputs.start_logits)\n",
" end_logits.append(outputs.end_logits)\n",
" input_ids_all.append(inputs[\"input_ids\"])\n",
" print(len(start_logits[0][0]),len(end_logits[0][0]))\n",
" \n",
" # Concatenate all logits and input_ids\n",
" start_logits = tf.concat(start_logits, axis=1)\n",
" end_logits = tf.concat(end_logits, axis=1)\n",
" input_ids_all = tf.concat(input_ids_all, axis=1)\n",
" print('xx',start_logits)\n",
" print('x0',start_logits[0, 151].numpy())\n",
" print('x1',tf.math.argmax(start_logits, axis=-1))\n",
" # Find the best start and end indices\n",
" answer_start_index = int(tf.math.argmax(start_logits, axis=-1)[0])\n",
" answer_end_index = int(tf.math.argmax(end_logits, axis=-1)[0])\n",
" # Get the predicted answer\n",
" predict_answer_tokens = input_ids_all[0, answer_start_index : answer_end_index + 1]\n",
" print('here',tokenizer.decode(predict_answer_tokens),answer_start_index,answer_end_index)\n",
"\n",
" return all_ands\n"
]
},
{
"cell_type": "code",
"execution_count": 300,
"metadata": {},
"outputs": [],
"source": [
"def get_answer(question, text_all):\n",
" chunks = chunk_text(text_all, tokenizer)\n",
" answer_start_indexs = []\n",
" answer_end_indexs = []\n",
" input_ids_all = []\n",
" all_ands = []\n",
" for chunk in chunks:\n",
" # Tokenize the question and chunk text\n",
" inputs = tokenizer(question, chunk, return_tensors=\"tf\", max_length=512, truncation=True, padding='max_length')\n",
" outputs = model(**inputs)\n",
" #print(outputs)\n",
" answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])\n",
" answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])\n",
" if answer_start_index != 0 and answer_end_index != 0:\n",
" answer_start_indexs.append(answer_start_index)\n",
" answer_end_indexs.append(answer_end_index)\n",
" break\n",
" #predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]\n",
" #print(tokenizer.decode(predict_answer_tokens),answer_start_index,answer_end_index)\n",
" #all_ands.append(tokenizer.decode(predict_answer_tokens))\n",
" print(answer_start_indexs[0])\n",
" print(answer_end_indexs[0])\n",
" predict_answer_tokens = inputs.input_ids[0, answer_start_indexs[0] : answer_end_indexs[0] + 1]\n",
" print(tokenizer.decode(predict_answer_tokens),answer_start_index,answer_end_index)\n",
" return all_ands\n"
]
},
{
"cell_type": "code",
"execution_count": 361,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"174\n",
"174\n",
"dismissed 174 174\n",
"[]\n"
]
}
],
"source": [
"# Example usage\n",
"#text_all = \"...\" # Your long text here\n",
"question = \"Which is the bankruptcy stage in the text petitioned,dismissed or discharged?\"\n",
"#\"which chapter of bankruptcy is referenced in the text?\"\n",
"#\"Which is the bankruptcy stage in the text petitioned,dismissed or discharged?\"\n",
"#\"which is the country?\"\n",
"#\"Which date case was filed?\"\n",
"#\"which is the Bankruptcy Court district?\"\n",
"#\"which is the country?\"\n",
"#\"Which is the bankruptcy stage in the text petitioned,dismissed or discharged?\"\n",
"#\"What is the second Social Security number or ITIN in the text?\"\n",
"#\"which chapter of bankruptcy is referenced in the text?\"\n",
"#\"What is the third Social Security number or ITIN in the text?\"\n",
"answer = get_answer(question, text_all)\n",
"print(answer)"
]
},
{
"cell_type": "code",
"execution_count": 249,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[CLS] 0 0\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Be aware, overflowing tokens are not returned for the setting you have chosen, i.e. sequence pairs with the 'longest_first' truncation strategy. So the returned list will always be empty even if some tokens have been removed.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[CLS] 0 0\n",
"[CLS] 0 0\n",
"[CLS] 0 0\n",
"[CLS] 0 0\n",
"['[CLS]', '[CLS]', '[CLS]', '[CLS]', '[CLS]']\n"
]
}
],
"source": [
"# Example usage\n",
"#text_all = \"...\" # Your long text here\n",
"question = \"which bankruptcy stages does the text refer: petitioned,dismissed/withdrawn or discharged?\"\n",
"#\"What is the third Social Security number or ITIN in the text?\"\n",
"answer = get_answer(question, text_all)\n",
"print(answer)"
]
},
{
"cell_type": "code",
"execution_count": 250,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[CLS] which country and state? [SEP] Information to identify the case : Debtor 1 Cristina Nelson First Name Middle Name Last NameSocial Security number or ITIN 461−81−0513 EIN _ _ − _ _ _ _ _ _ _ Debtor 2 ( Spouse, if filing ) Timothy Nelson First Name Middle Name Last NameSocial Security number or ITIN 529−97−1200 EIN _ _ − _ _ _ _ _ _ _ United States 0 103\n",
"[CLS] 0 0\n",
"[CLS] 0 0\n",
"[CLS] 0 0\n",
"[CLS] 0 0\n",
"['[CLS] which country and state? [SEP] Information to identify the case : Debtor 1 Cristina Nelson First Name Middle Name Last NameSocial Security number or ITIN 461−81−0513 EIN _ _ − _ _ _ _ _ _ _ Debtor 2 ( Spouse, if filing ) Timothy Nelson First Name Middle Name Last NameSocial Security number or ITIN 529−97−1200 EIN _ _ − _ _ _ _ _ _ _ United States', '[CLS]', '[CLS]', '[CLS]', '[CLS]']\n"
]
}
],
"source": [
"# Example usage\n",
"#text_all = \"...\" # Your long text here\n",
"question3 = \"which country and state?\"\n",
"#\"What is the third Social Security number or ITIN in the text?\"\n",
"answer = get_answer(question3, text_all)\n",
"print(answer)"
]
},
{
"cell_type": "code",
"execution_count": 132,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\" \\nInformation to identify the case:\\nDebtor 1 Cristina Nelson\\nFirst Name Middle Name Last NameSocial Security number or ITIN 461−81−0513\\nEIN _ _−_ _ _ _ _ _ _\\nDebtor 2\\n(Spouse, if filing)Timothy Nelson\\nFirst Name Middle Name Last NameSocial Security number or ITIN 529−97−1200\\nEIN _ _−_ _ _ _ _ _ _\\nUnited States Bankruptcy Court District of UtahDate case filed for chapter 13: 8/7/24Case number: 24−23963 JTM\\nOfficial Form 309I\\nNotice of Chapter 13 Bankruptcy Case 10/20\\nFor the debtors listed above, a case has been filed under chapter 13 of the Bankruptcy Code. An order for relief has\\nbeen entered.\\nThis notice has important information about the case for creditors, debtors, and trustees, including information about\\nthe meeting of creditors and deadlines. Read both pages carefully.\\nThe filing of the case imposed an automatic stay against most collection activities. This means that creditors generally may not take action to collect debts\\nfrom the debtors, the debtors' property, and certain codebtors. For example, while the stay is in effect, creditors cannot sue, garnish wages, assert a\\ndeficiency, repossess property, or otherwise try to collect from the debtors. Creditors cannot demand repayment from debtors by mail, phone, or\\notherwise. Creditors who violate the stay can be required to pay actual and punitive damages and attorney's fees. Under certain circumstances, the stay\\nmay be limited to 30 days or not exist at all, although debtors can ask the court to extend or impose a stay.\\nConfirmation of a chapter 13 plan may result in a discharge. Creditors who assert that the debtors are not entitled to a discharge under 11 U.S.C. §\\n1328(f) must file a motion objecting to discharge in the bankruptcy clerk's office within the deadline specified in this notice. Creditors who want to have\\ntheir debt excepted from discharge may be required to file a complaint in the bankruptcy clerk's office by the same deadline. (See line 13 below for more\\ninformation.)\\nTo protect your rights, consult an attorney. All documents filed in the case may be inspected at the bankruptcy clerk's office at the address listed below or\\nthrough PACER (Public Access to Court Electronic Records at https://pacer.uscourts.gov). Case status information is available at no charge by calling the\\nVoice Case Information System (VCIS) at 1−866−222−8029.\\nThe staff of the bankruptcy clerk's office cannot give legal advice.\\nTo help creditors correctly identify debtors, debtors submit full Social Security or Individual Taxpayer Identification\\nNumbers, which may appear on a version of this notice. However, the full numbers must not appear on any document\\nfiled with the court.\\nDo not file this notice with any proof of claim or other filing in the case. Do not include more than the last four digits of\\na Social Security or Individual Taxpayer Identification Number in any document, including attachments, that you file\\nwith the court.\\nAbout Debtor 1: About Debtor 2:\\n1. Debtor's full name Cristina Nelson Timothy Nelson\\n2.All other names used in the\\nlast 8 years\\n3. Address3342 N 1825 E\\nLayton, UT 840401788 E 3350 N\\nLayton, UT 84040\\n4.Debtor's attorney\\nName and addressE. Kent Winward\\n4850 Harrison Blvd. Suite 1\\nOgden, UT 84403Contact phone (801) 392−8200\\nEmail: utahbankruptcyfirm@gmail.com\\n5. Bankruptcy trustee\\nName and addressLon Jenkins tr\\nCh. 13 Trustee's Office\\n465 South 400 East\\nSuite 200\\nSalt Lake City, UT 84111Contact phone 801−596−2884\\nEmail: utahtrusteemail@ch13ut.org\\n6. Bankruptcy clerk's office\\nDocuments in this case may be filed\\nat this address.\\nYou may inspect all records filed in\\nthis case at this office or online at\\nhttps://pacer.uscourts.gov.United States Bankruptcy Court\\nDistrict of Utah\\n350 South Main #301\\nSalt Lake City, UT 84101\\nClerk of Court: David A. SimeHours open: 8:00 AM to 4:30 PM, Monday −\\nFriday\\nContact phone: (801) 524−6687\\nWebsite: www.utb.uscourts.gov\\nOfficial Form 309I Notice of Chapter 13 Bankruptcy Case page 1\\nDate Generated: 8/14/24 For more information, see page 2 >\\n 1 / 2 \\nDebtor Cristina Nelson and Timothy Nelson Case number 24−23963\\n7. Meeting of creditors\\n Debtors must attend the meeting to\\nbe questioned under oath. In a joint\\ncase, both spouses must attend.\\nCreditors may attend, but are not\\nrequired to do so.The meeting may be continued or adjourned\\nto a later date.\\nAll individual debtor(s) must provide picture\\nidentification and proof of social security\\nnumber to the trustee. Failure to do so may\\nresult in your case being dismissed.Meeting to be held on:\\nSep. 5, 2024 at 11:00 AM\\nLocation:\\nZoom video meeting. Go to Zoom.us/join,\\nEnter Meeting ID 437 037 6107, and\\nPasscode 3375693596, OR call\\n1−385−832−9074\\nFor additional meeting information go to https://www.justice.gov/ust/moc\\n8. Deadlines\\nThe bankruptcy clerk's office must\\nreceive these documents and any\\nrequired filing fee by the following\\ndeadlines.Deadline to file a complaint to challenge\\ndischargeability of certain debts:Filing deadline: 11/4/24\\nYou must file:\\n• a motion if you assert that the debtors are not entitled to receive a discharge\\n under U.S.C. § 1328(f), or\\n• a complaint if you want to have a particular debt excepted from discharge\\n under 11 U.S.C. § 523(a)(2) or (4).\\nDeadline for all creditors to file a proof of claim\\n(except governmental units):Filing deadline: 10/16/24\\nDeadline for governmental units to file a proof of\\nclaim:Filing deadline: 2/3/25\\nDeadlines for filing proof of claim:\\n A proof of claim is a signed statement describing a creditor's claim. A proof of claim form may be obtained at\\nwww.uscourts.gov or any bankruptcy clerk's office.\\nIf you do not file a proof of claim by the deadline, you might not be paid on your claim. To be paid, you must file a\\nproof of claim even if your claim is listed in the schedules that the debtor filed.\\nSecured creditors retain rights in their collateral regardless of whether they file a proof of claim. Filing a proof of\\nclaim submits the creditor to the jurisdiction of the bankruptcy court, with consequences a lawyer can explain. For\\nexample, a secured creditor who files a proof of claim may surrender important nonmonetary rights, including the\\nright to a jury trial.\\nDeadline to object to exemptions:\\nThe law permits debtors to keep certain property as exempt. If\\nyou believe that the law does not authorize an exemption\\nclaimed, you may file an objection.Filing\\ndeadline:30 days after the\\nconclusion of the\\nmeeting of\\ncreditors\\n9. Filing of plan and\\nconfirmation hearing on\\ndocket\\nObjections to ConfirmationThe debtor has filed a plan.\\nThe hearing on confirmation will be held on: 10/10/24 at 10:00 AM\\nLocation: This meeting is by Zoom. Go to, ZoomGov.com/join or call\\n1+(669)254−5252, Enter Meeting ID 161 5478 8875, Passcode 3834658\\n Objections to confirmation must be filed and served no later than 7 days before the date set for confirmation. If\\nthere are no timely filed objections to confirmation pending or if all objections to confirmation are resolved by a\\ncourt order or a stipulation signed by the debtor, the trustee and the objecting party, a plan may be confirmed\\nwithout objection, and the hearing stricken.\\n10. Creditors with a foreign\\naddressIf you are a creditor receiving a notice mailed to a foreign address, you may file a motion asking the court to\\nextend the deadline in this notice. Consult an attorney familiar with United States bankruptcy law if you have any\\nquestions about your rights in this case.\\n11. Filing a chapter 13\\nbankruptcy caseChapter 13 allows an individual with regular income and debts below a specified amount to adjust debts\\naccording to a plan. A plan is not effective unless the court confirms it. You may object to confirmation of the\\nplan and appear at the confirmation hearing. A copy of the plan, if not enclosed, will be sent to you later, and if\\nthe confirmation hearing is not indicated on this notice, you will be sent notice of the confirmation hearing. The\\ndebtor will remain in possession of the property and may continue to operate the business, if any, unless the\\ncourt orders otherwise.\\n12. Exempt property The law allows debtors to keep certain property as exempt. Fully exempt property will not be sold and distributed\\nto creditors, even if the case is converted to chapter 7. Debtors must file a list of property claimed as exempt.\\nYou may inspect that list at the bankruptcy clerk's office or online at https://pacer.uscourts.gov. If you believe\\nthat the law does not authorize an exemption that debtors claimed, you may file an objection by the deadline.\\n13. Discharge of debts Confirmation of a chapter 13 plan may result in a discharge of debts, which may include all or part of a debt.\\nHowever, unless the court orders otherwise, the debts will not be discharged until all payments under the plan\\nare made. A discharge means that creditors may never try to collect the debt from the debtors personally except\\nas provided in the plan. If you want to have a particular debt excepted from discharge under 11 U.S.C. §\\n523(a)(2) or (4), you must file a complaint and pay the filing fee in the bankruptcy clerk's office by the deadline. If\\nyou believe that the debtors are not entitled to a discharge of any of their debts under 11 U.S.C. § 1328(f), you\\nmust file a motion by the deadline.\\nOfficial Form 309I Notice of Chapter 13 Bankruptcy Case page 2Powered by TCPDF (www.tcpdf.org)\\n 2 / 2\\n\""
]
},
"execution_count": 132,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"text_all"
]
},
{
"cell_type": "code",
"execution_count": 126,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"9489"
]
},
"execution_count": 126,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(text_all)"
]
},
{
"cell_type": "code",
"execution_count": 131,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-09-12 09:24:06.178737: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: INVALID_ARGUMENT: indices[0,512] = 512 is not in [0, 512)\n"
]
},
{
"ename": "InvalidArgumentError",
"evalue": "Exception encountered when calling layer 'embeddings' (type TFEmbeddings).\n\n{{function_node __wrapped__ResourceGather_device_/job:localhost/replica:0/task:0/device:CPU:0}} indices[0,512] = 512 is not in [0, 512) [Op:ResourceGather] name: \n\nCall arguments received by layer 'embeddings' (type TFEmbeddings):\n • input_ids=tf.Tensor(shape=(1, 709), dtype=int32)\n • position_ids=None\n • inputs_embeds=None\n • training=False",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[131], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m inputs \u001b[38;5;241m=\u001b[39m tokenizer(question, text_all[:\u001b[38;5;241m3000\u001b[39m], return_tensors\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtf\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m----> 2\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/bankruptcy_automation/env/lib/python3.11/site-packages/tf_keras/src/utils/traceback_utils.py:70\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 67\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[1;32m 68\u001b[0m \u001b[38;5;66;03m# To get the full stack trace, call:\u001b[39;00m\n\u001b[1;32m 69\u001b[0m \u001b[38;5;66;03m# `tf.debugging.disable_traceback_filtering()`\u001b[39;00m\n\u001b[0;32m---> 70\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 71\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 72\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n",
"File \u001b[0;32m~/Documents/bankruptcy_automation/env/lib/python3.11/site-packages/transformers/modeling_tf_utils.py:437\u001b[0m, in \u001b[0;36munpack_inputs.<locals>.run_call_with_unpacked_inputs\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 434\u001b[0m config \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\n\u001b[1;32m 436\u001b[0m unpacked_inputs \u001b[38;5;241m=\u001b[39m input_processing(func, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mfn_args_and_kwargs)\n\u001b[0;32m--> 437\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43munpacked_inputs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/bankruptcy_automation/env/lib/python3.11/site-packages/transformers/models/distilbert/modeling_tf_distilbert.py:1091\u001b[0m, in \u001b[0;36mTFDistilBertForQuestionAnswering.call\u001b[0;34m(self, input_ids, attention_mask, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict, start_positions, end_positions, training)\u001b[0m\n\u001b[1;32m 1061\u001b[0m \u001b[38;5;129m@unpack_inputs\u001b[39m\n\u001b[1;32m 1062\u001b[0m \u001b[38;5;129m@add_start_docstrings_to_model_forward\u001b[39m(DISTILBERT_INPUTS_DOCSTRING\u001b[38;5;241m.\u001b[39mformat(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbatch_size, sequence_length\u001b[39m\u001b[38;5;124m\"\u001b[39m))\n\u001b[1;32m 1063\u001b[0m \u001b[38;5;129m@add_code_sample_docstrings\u001b[39m(\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1079\u001b[0m training: Optional[\u001b[38;5;28mbool\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m 1080\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[TFQuestionAnsweringModelOutput, Tuple[tf\u001b[38;5;241m.\u001b[39mTensor]]:\n\u001b[1;32m 1081\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 1082\u001b[0m \u001b[38;5;124;03m start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):\u001b[39;00m\n\u001b[1;32m 1083\u001b[0m \u001b[38;5;124;03m Labels for position (index) of the start of the labelled span for computing the token classification loss.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1089\u001b[0m \u001b[38;5;124;03m are not taken into account for computing the loss.\u001b[39;00m\n\u001b[1;32m 1090\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 1091\u001b[0m distilbert_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdistilbert\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1092\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_ids\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_ids\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1093\u001b[0m \u001b[43m \u001b[49m\u001b[43mattention_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1094\u001b[0m \u001b[43m \u001b[49m\u001b[43mhead_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhead_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1095\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs_embeds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs_embeds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1096\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_attentions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_attentions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1097\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_hidden_states\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_hidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1098\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_dict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1099\u001b[0m \u001b[43m \u001b[49m\u001b[43mtraining\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtraining\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1100\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1101\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m distilbert_output[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;66;03m# (bs, max_query_len, dim)\u001b[39;00m\n\u001b[1;32m 1102\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdropout(hidden_states, training\u001b[38;5;241m=\u001b[39mtraining) \u001b[38;5;66;03m# (bs, max_query_len, dim)\u001b[39;00m\n",
"File \u001b[0;32m~/Documents/bankruptcy_automation/env/lib/python3.11/site-packages/transformers/modeling_tf_utils.py:437\u001b[0m, in \u001b[0;36munpack_inputs.<locals>.run_call_with_unpacked_inputs\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 434\u001b[0m config \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\n\u001b[1;32m 436\u001b[0m unpacked_inputs \u001b[38;5;241m=\u001b[39m input_processing(func, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mfn_args_and_kwargs)\n\u001b[0;32m--> 437\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43munpacked_inputs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/bankruptcy_automation/env/lib/python3.11/site-packages/transformers/models/distilbert/modeling_tf_distilbert.py:454\u001b[0m, in \u001b[0;36mTFDistilBertMainLayer.call\u001b[0;34m(self, input_ids, attention_mask, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict, training)\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 452\u001b[0m head_mask \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28;01mNone\u001b[39;00m] \u001b[38;5;241m*\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnum_hidden_layers\n\u001b[0;32m--> 454\u001b[0m embedding_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43membeddings\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_ids\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs_embeds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs_embeds\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# (bs, seq_length, dim)\u001b[39;00m\n\u001b[1;32m 455\u001b[0m tfmr_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtransformer(\n\u001b[1;32m 456\u001b[0m embedding_output,\n\u001b[1;32m 457\u001b[0m attention_mask,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 462\u001b[0m training\u001b[38;5;241m=\u001b[39mtraining,\n\u001b[1;32m 463\u001b[0m )\n\u001b[1;32m 465\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m tfmr_output\n",
"File \u001b[0;32m~/Documents/bankruptcy_automation/env/lib/python3.11/site-packages/transformers/models/distilbert/modeling_tf_distilbert.py:117\u001b[0m, in \u001b[0;36mTFEmbeddings.call\u001b[0;34m(self, input_ids, position_ids, inputs_embeds, training)\u001b[0m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m position_ids \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 115\u001b[0m position_ids \u001b[38;5;241m=\u001b[39m tf\u001b[38;5;241m.\u001b[39mexpand_dims(tf\u001b[38;5;241m.\u001b[39mrange(start\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m, limit\u001b[38;5;241m=\u001b[39minput_shape[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]), axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\n\u001b[0;32m--> 117\u001b[0m position_embeds \u001b[38;5;241m=\u001b[39m \u001b[43mtf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgather\u001b[49m\u001b[43m(\u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mposition_embeddings\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindices\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mposition_ids\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 118\u001b[0m final_embeddings \u001b[38;5;241m=\u001b[39m inputs_embeds \u001b[38;5;241m+\u001b[39m position_embeds\n\u001b[1;32m 119\u001b[0m final_embeddings \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mLayerNorm(inputs\u001b[38;5;241m=\u001b[39mfinal_embeddings)\n",
"\u001b[0;31mInvalidArgumentError\u001b[0m: Exception encountered when calling layer 'embeddings' (type TFEmbeddings).\n\n{{function_node __wrapped__ResourceGather_device_/job:localhost/replica:0/task:0/device:CPU:0}} indices[0,512] = 512 is not in [0, 512) [Op:ResourceGather] name: \n\nCall arguments received by layer 'embeddings' (type TFEmbeddings):\n • input_ids=tf.Tensor(shape=(1, 709), dtype=int32)\n • position_ids=None\n • inputs_embeds=None\n • training=False"
]
}
],
"source": [
"inputs = tokenizer(question, text_all[:3000], return_tensors=\"tf\")\n",
"outputs = model(**inputs)"
]
},
{
"cell_type": "code",
"execution_count": 125,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"''"
]
},
"execution_count": 125,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])\n",
"answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])\n",
"predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]\n",
"tokenizer.decode(predict_answer_tokens)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the PyTorch model were not used when initializing the TF 2.0 model TFRobertaForQuestionAnswering: ['roberta.embeddings.position_ids']\n",
"- This IS expected if you are initializing TFRobertaForQuestionAnswering from a PyTorch model trained on another task or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing TFRobertaForQuestionAnswering from a PyTorch model that you expect to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model).\n",
"All the weights of TFRobertaForQuestionAnswering were initialized from the PyTorch model.\n",
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFRobertaForQuestionAnswering for predictions without further training.\n",
"/Users/camilayepes/Documents/bankruptcy_automation/env/lib/python3.11/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
" warnings.warn(\n"
]
},
{
"ename": "ImportError",
"evalue": "\nAutoModelForQuestionAnswering requires the PyTorch library but it was not found in your environment.\nHowever, we were able to find a TensorFlow installation. TensorFlow classes begin\nwith \"TF\", but are otherwise identically named to our PyTorch classes. This\nmeans that the TF equivalent of the class you tried to import would be \"TFAutoModelForQuestionAnswering\".\nIf you want to use TensorFlow, please use TF classes instead!\n\nIf you really do want to use PyTorch please go to\nhttps://pytorch.org/get-started/locally/ and follow the instructions that\nmatch your environment.\n",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[56], line 14\u001b[0m\n\u001b[1;32m 11\u001b[0m res \u001b[38;5;241m=\u001b[39m nlp(QA_input)\n\u001b[1;32m 13\u001b[0m \u001b[38;5;66;03m# b) Load model & tokenizer\u001b[39;00m\n\u001b[0;32m---> 14\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mAutoModelForQuestionAnswering\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m(model_name)\n\u001b[1;32m 15\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m AutoTokenizer\u001b[38;5;241m.\u001b[39mfrom_pretrained(model_name)\n",
"File \u001b[0;32m~/Documents/bankruptcy_automation/env/lib/python3.11/site-packages/transformers/utils/import_utils.py:1543\u001b[0m, in \u001b[0;36mDummyObject.__getattribute__\u001b[0;34m(cls, key)\u001b[0m\n\u001b[1;32m 1541\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m key\u001b[38;5;241m.\u001b[39mstartswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m key \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_from_config\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 1542\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__getattribute__\u001b[39m(key)\n\u001b[0;32m-> 1543\u001b[0m \u001b[43mrequires_backends\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_backends\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/bankruptcy_automation/env/lib/python3.11/site-packages/transformers/utils/import_utils.py:1522\u001b[0m, in \u001b[0;36mrequires_backends\u001b[0;34m(obj, backends)\u001b[0m\n\u001b[1;32m 1520\u001b[0m \u001b[38;5;66;03m# Raise an error for users who might not realize that classes without \"TF\" are torch-only\u001b[39;00m\n\u001b[1;32m 1521\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtorch\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m backends \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtf\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m backends \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_torch_available() \u001b[38;5;129;01mand\u001b[39;00m is_tf_available():\n\u001b[0;32m-> 1522\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(PYTORCH_IMPORT_ERROR_WITH_TF\u001b[38;5;241m.\u001b[39mformat(name))\n\u001b[1;32m 1524\u001b[0m \u001b[38;5;66;03m# Raise the inverse error for PyTorch users trying to load TF classes\u001b[39;00m\n\u001b[1;32m 1525\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtf\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m backends \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtorch\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m backends \u001b[38;5;129;01mand\u001b[39;00m is_torch_available() \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_tf_available():\n",
"\u001b[0;31mImportError\u001b[0m: \nAutoModelForQuestionAnswering requires the PyTorch library but it was not found in your environment.\nHowever, we were able to find a TensorFlow installation. TensorFlow classes begin\nwith \"TF\", but are otherwise identically named to our PyTorch classes. This\nmeans that the TF equivalent of the class you tried to import would be \"TFAutoModelForQuestionAnswering\".\nIf you want to use TensorFlow, please use TF classes instead!\n\nIf you really do want to use PyTorch please go to\nhttps://pytorch.org/get-started/locally/ and follow the instructions that\nmatch your environment.\n"
]
}
],
"source": [
"from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline\n",
"\n",
"model_name = \"deepset/roberta-base-squad2\"\n",
"\n",
"# a) Get predictions\n",
"nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)\n",
"QA_input = {\n",
" 'question': 'Why is model conversion important?',\n",
" 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'\n",
"}\n",
"res = nlp(QA_input)\n",
"\n",
"# b) Load model & tokenizer\n",
"model = AutoModelForQuestionAnswering.from_pretrained(model_name)\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = nlp(QA_input)\n",
"print(res)\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"from typing import Optional\n",
"\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"# Define a custom prompt to provide instructions and any additional context.\n",
"# 1) You can add examples into the prompt template to improve extraction quality\n",
"# 2) Introduce additional parameters to take context into account (e.g., include metadata\n",
"# about the document from which the text was extracted.)\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are an expert extraction algorithm. \"\n",
" \"Only extract relevant information from the text. \"\n",
" \"If you do not know the value of an attribute asked to extract, \"\n",
" \"return null for the attribute's value.\",\n",
" ),\n",
" # Please see the how-to about improving performance with\n",
" # reference examples.\n",
" # MessagesPlaceholder('examples'),\n",
" (\"human\", \"{text}\"),\n",
" ]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from typing import Optional\n",
"\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"# Define a custom prompt to provide instructions and any additional context.\n",
"# 1) You can add examples into the prompt template to improve extraction quality\n",
"# 2) Introduce additional parameters to take context into account (e.g., include metadata\n",
"# about the document from which the text was extracted.)\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are an expert extraction algorithm. \"\n",
" \"Only extract relevant information from the text. \"\n",
" \"If you do not know the value of an attribute asked to extract, \"\n",
" \"return null for the attribute's value.\",\n",
" ),\n",
" # Please see the how-to about improving performance with\n",
" # reference examples.\n",
" # MessagesPlaceholder('examples'),\n",
" (\"human\", \"{text}\"),\n",
" ]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'langchain_mistralai'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[11], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mlangchain_mistralai\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ChatMistralAI\n\u001b[1;32m 3\u001b[0m llm \u001b[38;5;241m=\u001b[39m ChatMistralAI(model\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmistral-large-latest\u001b[39m\u001b[38;5;124m\"\u001b[39m, temperature\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\n\u001b[1;32m 5\u001b[0m runnable \u001b[38;5;241m=\u001b[39m prompt \u001b[38;5;241m|\u001b[39m llm\u001b[38;5;241m.\u001b[39mwith_structured_output(schema\u001b[38;5;241m=\u001b[39mPerson)\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'langchain_mistralai'"
]
}
],
"source": [
"from langchain_mistralai import ChatMistralAI\n",
"\n",
"llm = ChatMistralAI(model=\"mistral-large-latest\", temperature=0)\n",
"\n",
"runnable = prompt | llm.with_structured_output(schema=Person)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from typing import List, Optional\n",
"\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"class Bankruptcy(BaseModel):\n",
" \"\"\"Information about a bankruptcy declaration.\"\"\"\n",
"\n",
" # ^ Doc-string for the entity Person.\n",
" # This doc-string is sent to the LLM as the description of the schema Person,\n",
" # and it can help to improve extraction results.\n",
"\n",
" # Note that:\n",
" # 1. Each field is an `optional` -- this allows the model to decline to extract it!\n",
" # 2. Each field has a `description` -- this description is used by the LLM.\n",
" # Having a good description can help improve extraction results.\n",
" ssns: Optional[list] = Field(default=None, description=\"The ssns of the persons\")\n",
" chapter: Optional[str] = Field(\n",
" default=None, description=\"The chapter of the bankruptcy declaration\"\n",
" )\n",
" country: Optional[str] = Field(\n",
" default=None, description=\"Country were the bankruptcy declaration is made\"\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"class Data(BaseModel):\n",
" \"\"\"Extracted data about bankruptcy declaration..\"\"\"\n",
"\n",
" # Creates a model so that we can extract multiple entities.\n",
" people: List[Bankruptcy]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'prompt' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[8], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m runnable \u001b[38;5;241m=\u001b[39m \u001b[43mprompt\u001b[49m \u001b[38;5;241m|\u001b[39m llm\u001b[38;5;241m.\u001b[39mwith_structured_output(schema\u001b[38;5;241m=\u001b[39mData)\n\u001b[1;32m 2\u001b[0m runnable\u001b[38;5;241m.\u001b[39minvoke({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtext\u001b[39m\u001b[38;5;124m\"\u001b[39m: text_all})\n",
"\u001b[0;31mNameError\u001b[0m: name 'prompt' is not defined"
]
}
],
"source": [
"runnable = prompt | llm.with_structured_output(schema=Data)\n",
"runnable.invoke({\"text\": text_all})"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"#print(text_all)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"#Find SSNs\n",
"ssn_pattern = r'\\b(?:Social Security number|ITIN)\\D*(\\d{3}[−\\s]\\d{2}[−\\s]\\d{4})\\b'\n",
"ssns = re.findall(ssn_pattern, text_all)\n",
"\n",
"def find_ssns(text):\n",
" ssns = re.findall(ssn_pattern, text_all)\n",
" return ssns"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"#Find chapter\n",
"chapter_pattern = r'Notice of Chapter (\\d+) Bankruptcy Case \\d{1,2}/\\d{2}'\n",
"\n",
"def find_chapter(text):\n",
" chapters = re.findall(chapter_pattern, text_all)\n",
" return chapters[0]\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"country_code = {\"United States\": \"US\", \"Canada\":\"CA\"}\n",
"\n",
"country_pattern = r'\\b(?:United States|Canada)\\b'\n",
"\n",
"def find_country_code(text):\n",
" country_match = re.search(country_pattern, text, re.IGNORECASE)\n",
" return country_code.get(country_match[0],None) "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"#Find State\n",
"state_pattern = r'\\nDistrict of (\\w+)'\n",
"\n",
"# Dictionaries for state codes\n",
"us_states = {\n",
" \"Alabama\": \"AL\", \"Alaska\": \"AK\", \"Arizona\": \"AZ\", \"Arkansas\": \"AR\", \"California\": \"CA\",\n",
" \"Colorado\": \"CO\", \"Connecticut\": \"CT\", \"Delaware\": \"DE\", \"Florida\": \"FL\", \"Georgia\": \"GA\",\n",
" \"Hawaii\": \"HI\", \"Idaho\": \"ID\", \"Illinois\": \"IL\", \"Indiana\": \"IN\", \"Iowa\": \"IA\",\n",
" \"Kansas\": \"KS\", \"Kentucky\": \"KY\", \"Louisiana\": \"LA\", \"Maine\": \"ME\", \"Maryland\": \"MD\",\n",
" \"Massachusetts\": \"MA\", \"Michigan\": \"MI\", \"Minnesota\": \"MN\", \"Mississippi\": \"MS\", \"Missouri\": \"MO\",\n",
" \"Montana\": \"MT\", \"Nebraska\": \"NE\", \"Nevada\": \"NV\", \"New Hampshire\": \"NH\", \"New Jersey\": \"NJ\",\n",
" \"New Mexico\": \"NM\", \"New York\": \"NY\", \"North Carolina\": \"NC\", \"North Dakota\": \"ND\", \"Ohio\": \"OH\",\n",
" \"Oklahoma\": \"OK\", \"Oregon\": \"OR\", \"Pennsylvania\": \"PA\", \"Rhode Island\": \"RI\", \"South Carolina\": \"SC\",\n",
" \"South Dakota\": \"SD\", \"Tennessee\": \"TN\", \"Texas\": \"TX\", \"Utah\": \"UT\", \"Vermont\": \"VT\",\n",
" \"Virginia\": \"VA\", \"Washington\": \"WA\", \"West Virginia\": \"WV\", \"Wisconsin\": \"WI\", \"Wyoming\": \"WY\"\n",
"}\n",
"\n",
"canadian_provinces = {\n",
" \"Alberta\": \"AB\", \"British Columbia\": \"BC\", \"Manitoba\": \"MB\", \"New Brunswick\": \"NB\", \"Newfoundland and Labrador\": \"NL\",\n",
" \"Northwest Territories\": \"NT\", \"Nova Scotia\": \"NS\", \"Nunavut\": \"NU\", \"Ontario\": \"ON\", \"Prince Edward Island\": \"PE\",\n",
" \"Quebec\": \"QC\", \"Saskatchewan\": \"SK\", \"Yukon\": \"YT\"\n",
"}\n",
"\n",
"def find_state_code(text,country_code):\n",
" state_match = re.search(state_pattern, text)\n",
" \n",
" if state_match:\n",
" # Extract the state or province name from the match\n",
" state_name = state_match.group(1).strip()\n",
" \n",
" if country_code == 'US':\n",
" state_code = us_states.get(state_name,None)\n",
" elif country_code == 'CA':\n",
" state_code = canadian_provinces.get(state_name,None)\n",
" else:\n",
" state_code = None\n",
" \n",
" return state_code\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"#Find stage\n",
"stage_patterns = {\n",
" 'Petition': r'\\b(case filed|petition filed|automatic stay)\\b',\n",
" 'Discharge': r'\\b(discharge of debts|discharge order|case discharged)\\b',\n",
" 'Dismissed': r'\\b(case dismissed|dismissal|converted to Chapter 7)\\b'\n",
"}\n",
"\n",
"# Function to categorize bankruptcy stages from text\n",
"def categorize_stage(text):\n",
" categorized_stages = {'Petition': False, 'Discharge': False, 'Dismissed': False}\n",
" \n",
" for stage, pattern in stage_patterns.items():\n",
" if re.search(pattern, text, re.IGNORECASE):\n",
" categorized_stages[stage] = True\n",
" \n",
" # Determine the final stage based on the presence of keywords\n",
" if categorized_stages['Petition']:\n",
" return 'Petition'\n",
" elif categorized_stages['Discharge']:\n",
" return 'Discharge'\n",
" elif categorized_stages['Dismissed']:\n",
" return 'Dismissed'\n",
" else:\n",
" return 'Unknown'"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data found: {'ssns': ['461−81−0513', '529−97−1200'], 'chapter': '13', 'country_code': 'US', 'state': 'UT', 'stage': 'Petition'}\n"
]
}
],
"source": [
"data = { \"ssns\": find_ssns(text_all),\n",
" \"chapter\": find_chapter(text_all),\n",
" \"country_code\": find_country_code(text_all),\n",
" \"state\": find_state_code(text_all, find_country_code(text_all)),\n",
" \"stage\": categorize_stage(text_all)\n",
" }\n",
"\n",
"print(f\"Data found: {data}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|