mariacyepes96
commited on
Commit
•
87b6881
1
Parent(s):
59166e4
Training in progress epoch 0
Browse files- README.md +4 -6
- test_2 copy.ipynb +0 -0
- test_2.ipynb +408 -0
- tf_model.h5 +1 -1
- tokenizer.json +3 -3
README.md
CHANGED
@@ -16,9 +16,9 @@ probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Train Loss:
|
20 |
-
- Validation Loss:
|
21 |
-
- Epoch:
|
22 |
|
23 |
## Model description
|
24 |
|
@@ -44,9 +44,7 @@ The following hyperparameters were used during training:
|
|
44 |
|
45 |
| Train Loss | Validation Loss | Epoch |
|
46 |
|:----------:|:---------------:|:-----:|
|
47 |
-
|
|
48 |
-
| 5.7170 | 5.6980 | 1 |
|
49 |
-
| 5.6767 | 5.6980 | 2 |
|
50 |
|
51 |
|
52 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Train Loss: 6.2045
|
20 |
+
- Validation Loss: 6.1385
|
21 |
+
- Epoch: 0
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
44 |
|
45 |
| Train Loss | Validation Loss | Epoch |
|
46 |
|:----------:|:---------------:|:-----:|
|
47 |
+
| 6.2045 | 6.1385 | 0 |
|
|
|
|
|
48 |
|
49 |
|
50 |
### Framework versions
|
test_2 copy.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
test_2.ipynb
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# !python3 -m venv env \n",
|
10 |
+
"# !source env/bin/activate \n",
|
11 |
+
"# !pip3 install langchain\n",
|
12 |
+
"# !pip3 install pypdf2"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": 2,
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"import PyPDF2\n",
|
22 |
+
"import re"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 3,
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"with open(\"bk_example.pdf\", \"rb\") as file:\n",
|
32 |
+
" reader = PyPDF2.PdfReader(file)\n",
|
33 |
+
" text_all = ''\n",
|
34 |
+
" # Extract text from each page\n",
|
35 |
+
" for page_num in range(len(reader.pages)):\n",
|
36 |
+
" page = reader.pages[page_num]\n",
|
37 |
+
" text = page.extract_text()\n",
|
38 |
+
" text_all = text_all +text"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": 12,
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [],
|
46 |
+
"source": [
|
47 |
+
"import getpass\n",
|
48 |
+
"import os\n",
|
49 |
+
"\n",
|
50 |
+
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
51 |
+
"os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": null,
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": []
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 10,
|
64 |
+
"metadata": {},
|
65 |
+
"outputs": [],
|
66 |
+
"source": [
|
67 |
+
"from typing import Optional\n",
|
68 |
+
"\n",
|
69 |
+
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
70 |
+
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
71 |
+
"\n",
|
72 |
+
"# Define a custom prompt to provide instructions and any additional context.\n",
|
73 |
+
"# 1) You can add examples into the prompt template to improve extraction quality\n",
|
74 |
+
"# 2) Introduce additional parameters to take context into account (e.g., include metadata\n",
|
75 |
+
"# about the document from which the text was extracted.)\n",
|
76 |
+
"prompt = ChatPromptTemplate.from_messages(\n",
|
77 |
+
" [\n",
|
78 |
+
" (\n",
|
79 |
+
" \"system\",\n",
|
80 |
+
" \"You are an expert extraction algorithm. \"\n",
|
81 |
+
" \"Only extract relevant information from the text. \"\n",
|
82 |
+
" \"If you do not know the value of an attribute asked to extract, \"\n",
|
83 |
+
" \"return null for the attribute's value.\",\n",
|
84 |
+
" ),\n",
|
85 |
+
" # Please see the how-to about improving performance with\n",
|
86 |
+
" # reference examples.\n",
|
87 |
+
" # MessagesPlaceholder('examples'),\n",
|
88 |
+
" (\"human\", \"{text}\"),\n",
|
89 |
+
" ]\n",
|
90 |
+
")"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": null,
|
96 |
+
"metadata": {},
|
97 |
+
"outputs": [],
|
98 |
+
"source": [
|
99 |
+
"from typing import Optional\n",
|
100 |
+
"\n",
|
101 |
+
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
102 |
+
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
103 |
+
"\n",
|
104 |
+
"# Define a custom prompt to provide instructions and any additional context.\n",
|
105 |
+
"# 1) You can add examples into the prompt template to improve extraction quality\n",
|
106 |
+
"# 2) Introduce additional parameters to take context into account (e.g., include metadata\n",
|
107 |
+
"# about the document from which the text was extracted.)\n",
|
108 |
+
"prompt = ChatPromptTemplate.from_messages(\n",
|
109 |
+
" [\n",
|
110 |
+
" (\n",
|
111 |
+
" \"system\",\n",
|
112 |
+
" \"You are an expert extraction algorithm. \"\n",
|
113 |
+
" \"Only extract relevant information from the text. \"\n",
|
114 |
+
" \"If you do not know the value of an attribute asked to extract, \"\n",
|
115 |
+
" \"return null for the attribute's value.\",\n",
|
116 |
+
" ),\n",
|
117 |
+
" # Please see the how-to about improving performance with\n",
|
118 |
+
" # reference examples.\n",
|
119 |
+
" # MessagesPlaceholder('examples'),\n",
|
120 |
+
" (\"human\", \"{text}\"),\n",
|
121 |
+
" ]\n",
|
122 |
+
")"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": 11,
|
128 |
+
"metadata": {},
|
129 |
+
"outputs": [
|
130 |
+
{
|
131 |
+
"ename": "ModuleNotFoundError",
|
132 |
+
"evalue": "No module named 'langchain_mistralai'",
|
133 |
+
"output_type": "error",
|
134 |
+
"traceback": [
|
135 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
136 |
+
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
137 |
+
"Cell \u001b[0;32mIn[11], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mlangchain_mistralai\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ChatMistralAI\n\u001b[1;32m 3\u001b[0m llm \u001b[38;5;241m=\u001b[39m ChatMistralAI(model\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmistral-large-latest\u001b[39m\u001b[38;5;124m\"\u001b[39m, temperature\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\n\u001b[1;32m 5\u001b[0m runnable \u001b[38;5;241m=\u001b[39m prompt \u001b[38;5;241m|\u001b[39m llm\u001b[38;5;241m.\u001b[39mwith_structured_output(schema\u001b[38;5;241m=\u001b[39mPerson)\n",
|
138 |
+
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'langchain_mistralai'"
|
139 |
+
]
|
140 |
+
}
|
141 |
+
],
|
142 |
+
"source": [
|
143 |
+
"from langchain_mistralai import ChatMistralAI\n",
|
144 |
+
"\n",
|
145 |
+
"llm = ChatMistralAI(model=\"mistral-large-latest\", temperature=0)\n",
|
146 |
+
"\n",
|
147 |
+
"runnable = prompt | llm.with_structured_output(schema=Person)"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": null,
|
153 |
+
"metadata": {},
|
154 |
+
"outputs": [],
|
155 |
+
"source": []
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"execution_count": 6,
|
160 |
+
"metadata": {},
|
161 |
+
"outputs": [],
|
162 |
+
"source": [
|
163 |
+
"from typing import List, Optional\n",
|
164 |
+
"\n",
|
165 |
+
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
166 |
+
"\n",
|
167 |
+
"\n",
|
168 |
+
"class Bankruptcy(BaseModel):\n",
|
169 |
+
" \"\"\"Information about a bankruptcy declaration.\"\"\"\n",
|
170 |
+
"\n",
|
171 |
+
" # ^ Doc-string for the entity Person.\n",
|
172 |
+
" # This doc-string is sent to the LLM as the description of the schema Person,\n",
|
173 |
+
" # and it can help to improve extraction results.\n",
|
174 |
+
"\n",
|
175 |
+
" # Note that:\n",
|
176 |
+
" # 1. Each field is an `optional` -- this allows the model to decline to extract it!\n",
|
177 |
+
" # 2. Each field has a `description` -- this description is used by the LLM.\n",
|
178 |
+
" # Having a good description can help improve extraction results.\n",
|
179 |
+
" ssns: Optional[list] = Field(default=None, description=\"The ssns of the persons\")\n",
|
180 |
+
" chapter: Optional[str] = Field(\n",
|
181 |
+
" default=None, description=\"The chapter of the bankruptcy declaration\"\n",
|
182 |
+
" )\n",
|
183 |
+
" country: Optional[str] = Field(\n",
|
184 |
+
" default=None, description=\"Country were the bankruptcy declaration is made\"\n",
|
185 |
+
" )"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": 7,
|
191 |
+
"metadata": {},
|
192 |
+
"outputs": [],
|
193 |
+
"source": [
|
194 |
+
"class Data(BaseModel):\n",
|
195 |
+
" \"\"\"Extracted data about bankruptcy declaration..\"\"\"\n",
|
196 |
+
"\n",
|
197 |
+
" # Creates a model so that we can extract multiple entities.\n",
|
198 |
+
" people: List[Bankruptcy]"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"execution_count": 8,
|
204 |
+
"metadata": {},
|
205 |
+
"outputs": [
|
206 |
+
{
|
207 |
+
"ename": "NameError",
|
208 |
+
"evalue": "name 'prompt' is not defined",
|
209 |
+
"output_type": "error",
|
210 |
+
"traceback": [
|
211 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
212 |
+
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
213 |
+
"Cell \u001b[0;32mIn[8], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m runnable \u001b[38;5;241m=\u001b[39m \u001b[43mprompt\u001b[49m \u001b[38;5;241m|\u001b[39m llm\u001b[38;5;241m.\u001b[39mwith_structured_output(schema\u001b[38;5;241m=\u001b[39mData)\n\u001b[1;32m 2\u001b[0m runnable\u001b[38;5;241m.\u001b[39minvoke({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtext\u001b[39m\u001b[38;5;124m\"\u001b[39m: text_all})\n",
|
214 |
+
"\u001b[0;31mNameError\u001b[0m: name 'prompt' is not defined"
|
215 |
+
]
|
216 |
+
}
|
217 |
+
],
|
218 |
+
"source": [
|
219 |
+
"runnable = prompt | llm.with_structured_output(schema=Data)\n",
|
220 |
+
"runnable.invoke({\"text\": text_all})"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"execution_count": 4,
|
226 |
+
"metadata": {},
|
227 |
+
"outputs": [],
|
228 |
+
"source": [
|
229 |
+
"#print(text_all)"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "code",
|
234 |
+
"execution_count": 5,
|
235 |
+
"metadata": {},
|
236 |
+
"outputs": [],
|
237 |
+
"source": [
|
238 |
+
"#Find SSNs\n",
|
239 |
+
"ssn_pattern = r'\\b(?:Social Security number|ITIN)\\D*(\\d{3}[−\\s]\\d{2}[−\\s]\\d{4})\\b'\n",
|
240 |
+
"ssns = re.findall(ssn_pattern, text_all)\n",
|
241 |
+
"\n",
|
242 |
+
"def find_ssns(text):\n",
|
243 |
+
" ssns = re.findall(ssn_pattern, text_all)\n",
|
244 |
+
" return ssns"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"cell_type": "code",
|
249 |
+
"execution_count": 6,
|
250 |
+
"metadata": {},
|
251 |
+
"outputs": [],
|
252 |
+
"source": [
|
253 |
+
"#Find chapter\n",
|
254 |
+
"chapter_pattern = r'Notice of Chapter (\\d+) Bankruptcy Case \\d{1,2}/\\d{2}'\n",
|
255 |
+
"\n",
|
256 |
+
"def find_chapter(text):\n",
|
257 |
+
" chapters = re.findall(chapter_pattern, text_all)\n",
|
258 |
+
" return chapters[0]\n"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"cell_type": "code",
|
263 |
+
"execution_count": 7,
|
264 |
+
"metadata": {},
|
265 |
+
"outputs": [],
|
266 |
+
"source": [
|
267 |
+
"country_code = {\"United States\": \"US\", \"Canada\":\"CA\"}\n",
|
268 |
+
"\n",
|
269 |
+
"country_pattern = r'\\b(?:United States|Canada)\\b'\n",
|
270 |
+
"\n",
|
271 |
+
"def find_country_code(text):\n",
|
272 |
+
" country_match = re.search(country_pattern, text, re.IGNORECASE)\n",
|
273 |
+
" return country_code.get(country_match[0],None) "
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"execution_count": 8,
|
279 |
+
"metadata": {},
|
280 |
+
"outputs": [],
|
281 |
+
"source": [
|
282 |
+
"#Find State\n",
|
283 |
+
"state_pattern = r'\\nDistrict of (\\w+)'\n",
|
284 |
+
"\n",
|
285 |
+
"# Dictionaries for state codes\n",
|
286 |
+
"us_states = {\n",
|
287 |
+
" \"Alabama\": \"AL\", \"Alaska\": \"AK\", \"Arizona\": \"AZ\", \"Arkansas\": \"AR\", \"California\": \"CA\",\n",
|
288 |
+
" \"Colorado\": \"CO\", \"Connecticut\": \"CT\", \"Delaware\": \"DE\", \"Florida\": \"FL\", \"Georgia\": \"GA\",\n",
|
289 |
+
" \"Hawaii\": \"HI\", \"Idaho\": \"ID\", \"Illinois\": \"IL\", \"Indiana\": \"IN\", \"Iowa\": \"IA\",\n",
|
290 |
+
" \"Kansas\": \"KS\", \"Kentucky\": \"KY\", \"Louisiana\": \"LA\", \"Maine\": \"ME\", \"Maryland\": \"MD\",\n",
|
291 |
+
" \"Massachusetts\": \"MA\", \"Michigan\": \"MI\", \"Minnesota\": \"MN\", \"Mississippi\": \"MS\", \"Missouri\": \"MO\",\n",
|
292 |
+
" \"Montana\": \"MT\", \"Nebraska\": \"NE\", \"Nevada\": \"NV\", \"New Hampshire\": \"NH\", \"New Jersey\": \"NJ\",\n",
|
293 |
+
" \"New Mexico\": \"NM\", \"New York\": \"NY\", \"North Carolina\": \"NC\", \"North Dakota\": \"ND\", \"Ohio\": \"OH\",\n",
|
294 |
+
" \"Oklahoma\": \"OK\", \"Oregon\": \"OR\", \"Pennsylvania\": \"PA\", \"Rhode Island\": \"RI\", \"South Carolina\": \"SC\",\n",
|
295 |
+
" \"South Dakota\": \"SD\", \"Tennessee\": \"TN\", \"Texas\": \"TX\", \"Utah\": \"UT\", \"Vermont\": \"VT\",\n",
|
296 |
+
" \"Virginia\": \"VA\", \"Washington\": \"WA\", \"West Virginia\": \"WV\", \"Wisconsin\": \"WI\", \"Wyoming\": \"WY\"\n",
|
297 |
+
"}\n",
|
298 |
+
"\n",
|
299 |
+
"canadian_provinces = {\n",
|
300 |
+
" \"Alberta\": \"AB\", \"British Columbia\": \"BC\", \"Manitoba\": \"MB\", \"New Brunswick\": \"NB\", \"Newfoundland and Labrador\": \"NL\",\n",
|
301 |
+
" \"Northwest Territories\": \"NT\", \"Nova Scotia\": \"NS\", \"Nunavut\": \"NU\", \"Ontario\": \"ON\", \"Prince Edward Island\": \"PE\",\n",
|
302 |
+
" \"Quebec\": \"QC\", \"Saskatchewan\": \"SK\", \"Yukon\": \"YT\"\n",
|
303 |
+
"}\n",
|
304 |
+
"\n",
|
305 |
+
"def find_state_code(text,country_code):\n",
|
306 |
+
" state_match = re.search(state_pattern, text)\n",
|
307 |
+
" \n",
|
308 |
+
" if state_match:\n",
|
309 |
+
" # Extract the state or province name from the match\n",
|
310 |
+
" state_name = state_match.group(1).strip()\n",
|
311 |
+
" \n",
|
312 |
+
" if country_code == 'US':\n",
|
313 |
+
" state_code = us_states.get(state_name,None)\n",
|
314 |
+
" elif country_code == 'CA':\n",
|
315 |
+
" state_code = canadian_provinces.get(state_name,None)\n",
|
316 |
+
" else:\n",
|
317 |
+
" state_code = None\n",
|
318 |
+
" \n",
|
319 |
+
" return state_code\n",
|
320 |
+
"\n"
|
321 |
+
]
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"cell_type": "code",
|
325 |
+
"execution_count": 9,
|
326 |
+
"metadata": {},
|
327 |
+
"outputs": [],
|
328 |
+
"source": [
|
329 |
+
"#Find stage\n",
|
330 |
+
"stage_patterns = {\n",
|
331 |
+
" 'Petition': r'\\b(case filed|petition filed|automatic stay)\\b',\n",
|
332 |
+
" 'Discharge': r'\\b(discharge of debts|discharge order|case discharged)\\b',\n",
|
333 |
+
" 'Dismissed': r'\\b(case dismissed|dismissal|converted to Chapter 7)\\b'\n",
|
334 |
+
"}\n",
|
335 |
+
"\n",
|
336 |
+
"# Function to categorize bankruptcy stages from text\n",
|
337 |
+
"def categorize_stage(text):\n",
|
338 |
+
" categorized_stages = {'Petition': False, 'Discharge': False, 'Dismissed': False}\n",
|
339 |
+
" \n",
|
340 |
+
" for stage, pattern in stage_patterns.items():\n",
|
341 |
+
" if re.search(pattern, text, re.IGNORECASE):\n",
|
342 |
+
" categorized_stages[stage] = True\n",
|
343 |
+
" \n",
|
344 |
+
" # Determine the final stage based on the presence of keywords\n",
|
345 |
+
" if categorized_stages['Petition']:\n",
|
346 |
+
" return 'Petition'\n",
|
347 |
+
" elif categorized_stages['Discharge']:\n",
|
348 |
+
" return 'Discharge'\n",
|
349 |
+
" elif categorized_stages['Dismissed']:\n",
|
350 |
+
" return 'Dismissed'\n",
|
351 |
+
" else:\n",
|
352 |
+
" return 'Unknown'"
|
353 |
+
]
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"cell_type": "code",
|
357 |
+
"execution_count": 10,
|
358 |
+
"metadata": {},
|
359 |
+
"outputs": [
|
360 |
+
{
|
361 |
+
"name": "stdout",
|
362 |
+
"output_type": "stream",
|
363 |
+
"text": [
|
364 |
+
"Data found: {'ssns': ['461−81−0513', '529−97−1200'], 'chapter': '13', 'country_code': 'US', 'state': 'UT', 'stage': 'Petition'}\n"
|
365 |
+
]
|
366 |
+
}
|
367 |
+
],
|
368 |
+
"source": [
|
369 |
+
"data = { \"ssns\": find_ssns(text_all),\n",
|
370 |
+
" \"chapter\": find_chapter(text_all),\n",
|
371 |
+
" \"country_code\": find_country_code(text_all),\n",
|
372 |
+
" \"state\": find_state_code(text_all, find_country_code(text_all)),\n",
|
373 |
+
" \"stage\": categorize_stage(text_all)\n",
|
374 |
+
" }\n",
|
375 |
+
"\n",
|
376 |
+
"print(f\"Data found: {data}\")"
|
377 |
+
]
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"cell_type": "code",
|
381 |
+
"execution_count": null,
|
382 |
+
"metadata": {},
|
383 |
+
"outputs": [],
|
384 |
+
"source": []
|
385 |
+
}
|
386 |
+
],
|
387 |
+
"metadata": {
|
388 |
+
"kernelspec": {
|
389 |
+
"display_name": "Python 3",
|
390 |
+
"language": "python",
|
391 |
+
"name": "python3"
|
392 |
+
},
|
393 |
+
"language_info": {
|
394 |
+
"codemirror_mode": {
|
395 |
+
"name": "ipython",
|
396 |
+
"version": 3
|
397 |
+
},
|
398 |
+
"file_extension": ".py",
|
399 |
+
"mimetype": "text/x-python",
|
400 |
+
"name": "python",
|
401 |
+
"nbconvert_exporter": "python",
|
402 |
+
"pygments_lexer": "ipython3",
|
403 |
+
"version": "3.11.6"
|
404 |
+
}
|
405 |
+
},
|
406 |
+
"nbformat": 4,
|
407 |
+
"nbformat_minor": 2
|
408 |
+
}
|
tf_model.h5
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 265583592
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:142c651418d7bc9ced202b8cb5b0154f7378acee3eb6d55b7bea7affea11c187
|
3 |
size 265583592
|
tokenizer.json
CHANGED
@@ -2,13 +2,13 @@
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
-
"max_length":
|
6 |
"strategy": "OnlySecond",
|
7 |
-
"stride":
|
8 |
},
|
9 |
"padding": {
|
10 |
"strategy": {
|
11 |
-
"Fixed":
|
12 |
},
|
13 |
"direction": "Right",
|
14 |
"pad_to_multiple_of": null,
|
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
+
"max_length": 512,
|
6 |
"strategy": "OnlySecond",
|
7 |
+
"stride": 128
|
8 |
},
|
9 |
"padding": {
|
10 |
"strategy": {
|
11 |
+
"Fixed": 512
|
12 |
},
|
13 |
"direction": "Right",
|
14 |
"pad_to_multiple_of": null,
|