mariagrandury commited on
Commit
cfab146
1 Parent(s): 351bb45

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -7
README.md CHANGED
@@ -1,22 +1,116 @@
1
  ---
2
- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit
3
  language:
4
- - en
5
  license: apache-2.0
6
  tags:
7
- - text-generation-inference
8
- - transformers
9
  - unsloth
10
  - llama
11
  - trl
 
 
12
  ---
13
 
14
- # Uploaded model
 
 
15
 
16
  - **Developed by:** mariagrandury
 
 
17
  - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: meta-llama/Meta-Llama-3.1-8B
3
  language:
4
+ - es
5
  license: apache-2.0
6
  tags:
 
 
7
  - unsloth
8
  - llama
9
  - trl
10
+ library_name: transformers
11
+ pipeline_tag: text-generation
12
  ---
13
 
14
+ # Model Details
15
+
16
+ ## Model Description
17
 
18
  - **Developed by:** mariagrandury
19
+ - **Model type:** Language model, instruction model
20
+ - **Language(s) (NLP):** es
21
  - **License:** apache-2.0
22
+ - **Model fine-tuned from:** meta-llama/Meta-Llama-3.1-8B
23
+ - **Dataset used:** mariagrandury/elgrancorpus-it
24
+
25
+ <!--
26
+ ## Model Sources
27
+
28
+ - **Paper**: Coming soon! ✨
29
+ - **Demo**: Coming soon! ✨
30
+ -->
31
+
32
+ # 💡 Uses
33
+
34
+ ## Direct Use
35
+
36
+ This model's fine-tuning on an instructions dataset enables it to follow natural language instructions in Spanish. The direct use cases include virtual assistants and content generation.
37
+
38
+ ## Downstream Use
39
+
40
+ This model is an instruct model, it’s primarily intended for direct use and may not be ideal for further fine-tuning. It serves as a general model suitable for a wide range of applications. However, for specific use cases within certain domains, fine-tuning with domain-specific data may improve the model's performance.
41
+
42
+ ## Out-of-Scope Use
43
+
44
+ This model should not be used for production purposes without conducting a thorough assessment of risks and mitigation strategies.
45
 
46
+ # ⚠️ Bias, Risks, and Limitations
47
+
48
+ This model has limitations associated with both the underlying language model and the instruction tuning data. It is crucial to acknowledge that predictions generated by the model may inadvertently exhibit common deficiencies of language models, including hallucination, toxicity, and perpetuate harmful stereotypes across protected classes, identity characteristics, and sensitive, social, and occupational groups.
49
+
50
+ ## Recommendations
51
+
52
+ Please, when utilizing this model, exercise caution and critically assess the output to mitigate the potential impact of biased or inaccurate information.
53
+
54
+ If considering this model for production use, it is crucial to thoroughly evaluate the associated risks and adopt suitable precautions. Conduct a comprehensive assessment to address any potential biases and ensure compliance with legal and ethical standards.
55
+
56
+ # 📚 Training Details
57
+
58
+ ## Training Data
59
+
60
+ This model is based on [Meta Llama 3.1 8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) and has been fine-tuned using [elgrancorpus-it]().
61
+
62
+ It was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
63
 
64
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
65
+
66
+ <!--
67
+ # ✅ Evaluation
68
+
69
+ We are evaluating the model and will publish the results soon.
70
+
71
+ ### Results
72
+
73
+ Paper coming soon!
74
+ -->
75
+
76
+ # ⚙️ Technical Specifications
77
+
78
+ <!--
79
+ ## Model Architecture and Objective
80
+ -->
81
+
82
+ ## Compute Infrastructure
83
+
84
+ ### Hardware
85
+
86
+ This model was trained using a GPU L4 with 53 GB for 1h.
87
+
88
+ ### Software
89
+
90
+ We used the following libraries:
91
+
92
+ - `unsloth`
93
+ - `transformers`
94
+ - `peft`
95
+ - `accelerate`
96
+ - `bitsandbytes`
97
+
98
+ # 🌳 Environmental Impact
99
+
100
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
101
+
102
+ - **Hardware Type:** 1 X L4 - 53 GB
103
+ - **Hours used:** 1
104
+ - **Cloud Provider:** Google
105
+ - **Compute Region:** Europe
106
+ - **Carbon Emitted:** 72W x 1h = 0.07 kWh x 0.27 kg eq. CO2/kWh = 0.02 kg eq. CO2
107
+
108
+ # 🔥 How to Get Started with
109
+
110
+ ```
111
+ ```
112
+
113
+ # 📝 Citation
114
+
115
+ ```
116
+ ```